Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurol ; 14: 1258895, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020603

RESUMO

Objective: To characterize how the proximity of deep brain stimulation (DBS) active contact locations relative to the cerebellothalamic tract (CTT) affect clinical outcomes in patients with essential tremor (ET). Background: DBS is an effective treatment for refractory ET. However, the role of the CTT in mediating the effect of DBS for ET is not well characterized. 7-Tesla (T) MRI-derived tractography provides a means to measure the distance between the active contact and the CTT more precisely. Methods: A retrospective review was conducted of 12 brain hemispheres in 7 patients at a single center who underwent 7T MRI prior to ventral intermediate nucleus (VIM) DBS lead placement for ET following failed medical management. 7T-derived diffusion tractography imaging was used to identify the CTT and was merged with the post-operative CT to calculate the Euclidean distance from the active contact to the CTT. We collected optimized stimulation parameters at initial programing, 1- and 2-year follow up, as well as a baseline and postoperative Fahn-Tolosa-Marin (FTM) scores. Results: The therapeutic DBS current mean (SD) across implants was 1.8 mA (1.8) at initial programming, 2.5 mA (0.6) at 1 year, and 2.9 mA (1.1) at 2-year follow up. Proximity of the clinically-optimized active contact to the CTT was 3.1 mm (1.2), which correlated with lower current requirements at the time of initial programming (R2 = 0.458, p = 0.009), but not at the 1- and 2-year follow up visits. Subjects achieved mean (SD) improvement in tremor control of 77.9% (14.5) at mean follow-up time of 22.2 (18.9) months. Active contact distance to the CTT did not predict post-operative tremor control at the time of the longer term clinical follow up (R2 = -0.073, p = 0.58). Conclusion: Active DBS contact proximity to the CTT was associated with lower therapeutic current requirement following DBS surgery for ET, but therapeutic current was increased over time. Distance to CTT did not predict the need for increased current over time, or longer term post-operative tremor control in this cohort. Further study is needed to characterize the role of the CTT in long-term DBS outcomes.

2.
Brain Stimul ; 16(2): 445-455, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36746367

RESUMO

BACKGROUND: While deep brain stimulation (DBS) therapy can be effective at suppressing tremor in individuals with medication-refractory Essential Tremor, patient outcome variability remains a significant challenge across centers. Proximity of active electrodes to the cerebellothalamic tract (CTT) is likely important in suppressing tremor, but how tremor control and side effects relate to targeting parcellations within the CTT and other pathways in and around the ventral intermediate (VIM) nucleus of thalamus remain unclear. METHODS: Using ultra-high field (7T) MRI, we developed high-dimensional, subject-specific pathway activation models for 23 directional DBS leads. Modeled pathway activations were compared with post-hoc analysis of clinician-optimized DBS settings, paresthesia thresholds, and dysarthria thresholds. Mixed-effect models were utilized to determine how the six parcellated regions of the CTT and how six other pathways in and around the VIM contributed to tremor suppression and induction of side effects. RESULTS: The lateral portion of the CTT had the highest activation at clinical settings (p < 0.05) and a significant effect on tremor suppression (p < 0.001). Activation of the medial lemniscus and posterior-medial CTT was significantly associated with severity of paresthesias (p < 0.001). Activation of the anterior-medial CTT had a significant association with dysarthria (p < 0.05). CONCLUSIONS: This study provides a detailed understanding of the fiber pathways responsible for therapy and side effects of DBS for Essential Tremor, and suggests a model-based programming approach will enable more selective activation of lateral fibers within the CTT.


Assuntos
Estimulação Encefálica Profunda , Tremor Essencial , Humanos , Tremor Essencial/terapia , Tremor Essencial/etiologia , Tremor/terapia , Disartria/etiologia , Disartria/terapia , Estimulação Encefálica Profunda/métodos , Tálamo , Parestesia/etiologia , Resultado do Tratamento
3.
Arthroplast Today ; 5(3): 362-370, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31516983

RESUMO

BACKGROUND: Retrieval analysis has long served the orthopaedic community as a tool for understanding implant failure modes; however, what retrieval studies can reveal about the nature of prosthetic joint infection (PJI) remains unknown. We hypothesize that records from a comprehensive joint retrieval program should corroborate clinically-reported temporal characteristics of prosthesis-related infection. METHODS: We examined 2527 records documenting a decade of explanted hip and knee components to quantify the following: (1) the relative contribution of infection to revision arthroplasty; (2) the effects of joint type, revision status, and reason for retrieval on indwelling time; and (3) whether the temporal distribution of infected explants reflects clinical experience. RESULTS: In this series, 20% (507/2527) of explants were performed for infection, with PJI being more commonly implicated in the retrieval of revision implants than of primaries. Infected prostheses were explanted 23.2 months sooner on average than those retrieved for other causes. Within the subset of infected devices, revision components were explanted 11.2 months sooner than primaries, with no appreciable difference observed between hips and knees. Retrieval-based temporal distributions were most similar to PJI studies with endpoint enrollment or long duration follow-up, suggesting a later average onset of infection than reported in comparable clinical studies with short (<10-year) follow-up. CONCLUSIONS: Infection represents a major cause of revision arthroplasty, and is associated with shorter indwelling times in revision components than in primaries. Studies with less than 10 years of follow-up are likely to under-report late PJI.

4.
Physiol Meas ; 40(1): 01NT01, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30530942

RESUMO

OBJECTIVE: Multiple surgical procedures require drilling through bone to access underlying anatomy or for device placement. In dental applications, iatrogenic injury caused by accidental perforation of cortical bone into critical anatomy occurs in a significant number of dental implant procedures. Limited real-time sensing methods are available to guide clinicians while drilling through cancellous bone towards cortical interfaces. Early interface detection could prevent accidental damage to underlying anatomic structures. This study aims to demonstrate that electrical impedance spectroscopy can be integrated within a standard surgical drill to distinguish between bone types. APPROACH: A custom bearing and insulated drill bit were designed to collect 10 cortical and cancellous impedance measurements from ex vivo femurs (2 pigs) and 80 bone measurements from in situ femurs (4 pigs). In the in situ study, two return electrodes (simulating a lip-clip and shoulder pad) were used to assess impedance differences associated with return electrode geometry. MAIN RESULTS: Significant ex vivo differences (p < 0.05) between cortical and cancellous bone occurred in the real resistivity from 0.1 to 100 kHz and in the imaginary resistivity from 0.3 to 10 kHz, with a maximum cortical-to-cancellous impedance ratio of 1.48. Significant in situ differences (p < 0.01) were observed in both real and imaginary resistivities from 0.1 to 100 kHz, with a maximum impedance ratio of 2.94. AUCs for classifying bone type based on the real resistivity ranged from 0.84 to 0.96 for ex vivo bone and 0.98 to 1.0 for in situ bone. Mean differences between return electrode geometries were less than 5%. SIGNIFICANCE: The significant cortical-to-cancellous contrast observed indicates this system's potential to provide real-time tissue differentiation during bone drilling procedures.


Assuntos
Impedância Elétrica , Fêmur/cirurgia , Procedimentos Ortopédicos/instrumentação , Animais , Fêmur/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...