Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 20434, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993496

RESUMO

The electronic structure of UC[Formula: see text] (x = 0.9, 1.0, 1.1, 2.0) was studied by means of x-ray absorption spectroscopy (XAS) at the C K edge and measurements in the high energy resolution fluorescence detection (HERFD) mode at the U [Formula: see text] and [Formula: see text] edges. The full-relativistic density functional theory calculations taking into account the [Formula: see text] Coulomb interaction U and spin-orbit coupling (DFT+U+SOC) were also performed for UC and UC[Formula: see text]. While the U [Formula: see text] HERFD-XAS spectra of the studied samples reveal little difference, the U [Formula: see text] HERFD-XAS spectra show certain sensitivity to the varying carbon content in uranium carbides. The observed gradual changes in the U [Formula: see text] HERFD spectra suggest an increase in the C 2p-U 5f charge transfer, which is supported by the orbital population analysis in the DFT+U+SOC calculations, indicating an increase in the U 5f occupancy in UC[Formula: see text] as compared to that in UC. On the other hand, the density of states at the Fermi level were found to be significantly lower in UC[Formula: see text], thus affecting the thermodynamic properties. Both the x-ray spectroscopic data (in particular, the C K XAS measurements) and results of the DFT+U+SOC calculations indicate the importance of taking into account U and SOC for the description of the electronic structure of actinide carbides.

2.
Sci Rep ; 13(1): 11607, 2023 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-37463970

RESUMO

The electronic structure and the chemical state in Am binary oxides and Am-doped UO[Formula: see text] were studied by means of X-ray absorption spectroscopy at shallow Am core (4d and 5d) edges. In particular, the Am 5f states were probed and the nature of their bonding to the oxygen states was analyzed. The interpretation of the experimental data was supported by the Anderson impurity model (AIM) calculations which took into account the full multiplet structure due to the interaction between 5f electrons as well as the interaction with the core hole. The sensitivity of the branching ratio of the Am [Formula: see text] and [Formula: see text] X-ray absorption lines to the chemical state of Am was shown using Am binary oxides as reference systems. The observed ratio for Am-doped UO[Formula: see text] suggests that at least at low Am concentrations, americium is in the Am(III) state in the UO[Formula: see text] lattice. To confirm the validity of the applied AIM approach, the analysis of the Am 4f X-ray photoelectron spectra of AmO[Formula: see text] and Am[Formula: see text]O[Formula: see text] was also performed which revealed a good agreement between experiment and calculations. As a whole, AmO[Formula: see text] can be classified as the charge-transfer compound with the 5f occupancy ([Formula: see text]) equal to 5.73 electrons, while Am[Formula: see text]O[Formula: see text] is rather a Mott-Hubbard system with [Formula: see text] = 6.05.

3.
J Phys Chem C Nanomater Interfaces ; 126(47): 20143-20154, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36483685

RESUMO

A detailed examination of the electronic structures of methylammonium lead triiodide (MAPI) and methylammonium iodide (MAI) is performed with ab initio molecular dynamics (AIMD) simulations based on density functional theory, and the theoretical results are compared to experimental probes. The occupied valence bands of a MAPI single crystal and MAI powder are probed with X-ray photoelectron spectroscopy, and the conduction bands are probed from the perspective of nitrogen K-edge X-ray absorption spectroscopy. Combined, the theoretical simulations and the two experimental techniques allow for a dissection of the electronic structure unveiling the nature of chemical bonding in MAPI and MAI. Here, we show that the difference in band gap between MAPI and MAI is caused chiefly by interactions between iodine and lead but also weaker interactions with the MA+ counterions. Spatial decomposition of the iodine p levels allows for analysis of Pb-I σ bonds and π interactions, which contribute to this effect with the involvement of the Pb 6p levels. Differences in hydrogen bonding between the two materials, seen in the AIMD simulations, are reflected in nitrogen valence orbital composition and in nitrogen K-edge X-ray absorption spectra.

5.
Nat Commun ; 13(1): 3839, 2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35787623

RESUMO

Hot carrier solar cells hold promise for exceeding the Shockley-Queisser limit. Slow hot carrier cooling is one of the most intriguing properties of lead halide perovskites and distinguishes this class of materials from competing materials used in solar cells. Here we use the element selectivity of high-resolution X-ray spectroscopy and density functional theory to uncover a previously hidden feature in the conduction band states, the σ-π energy splitting, and find that it is strongly influenced by the strength of electronic coupling between the A-cation and bromide-lead sublattice. Our finding provides an alternative mechanism to the commonly discussed polaronic screening and hot phonon bottleneck carrier cooling mechanisms. Our work emphasizes the optoelectronic role of the A-cation, provides a comprehensive view of A-cation effects in the crystal and electronic structures, and outlines a broadly applicable spectroscopic approach for assessing the impact of chemical alterations of the A-cation on perovskite electronic structure.

6.
Environ Sci Nano ; 9(4): 1509-1518, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35520632

RESUMO

The aim of this study is to synthesize PuO2 nanoparticles (NPs) at low pH values and characterize the materials using laboratory and synchrotron-based methods. Properties of the PuO2 NPs formed under acidic conditions (pH 1-4) are explored here at the atomic scale. High-resolution transmission electron microscopy (HRTEM) is applied to characterize the crystallinity, morphology and size of the particles. It is found that 2 nm crystalline NPs are formed with a PuO2 crystal structure. High energy resolution fluorescence detected (HERFD) X-ray absorption spectroscopy at the Pu M4 edge has been used to identify the Pu oxidation states and recorded data are analysed using the theory based on the Anderson impurity model (AIM). The experimental data obtained on NPs show that the Pu(iv) oxidation state dominates in all NPs formed at pH 1-4. However, the suspension at pH 1 demonstrates the presence of Pu(iii) and Pu(vi) in addition to the Pu(iv), which is associated with redox dissolution of PuO2 NPs under acidic conditions. We discuss in detail the mechanism that affects the PuO2 NPs synthesis under acidic conditions and compare it with one in neutral and alkaline conditions. Hence, the results shown here, together with the first Pu M4 HERFD data on PuF3 and PuF4 compounds, are significant for the colloid facilitated transport governing the migration of plutonium in a subsurface environment.

7.
J Synchrotron Radiat ; 29(Pt 2): 295-302, 2022 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-35254291

RESUMO

UC and UMeC2 (Me = Fe, Zr, Mo) carbides were studied by the high-energy-resolution fluorescence-detected X-ray absorption (HERFD-XAS) technique at the U M4 and L3 edges. Both U M4 and L3 HERFD-XAS reveal some differences between UMeC2 and UC; there are differences also between the M4 and L3 edge results for both types of carbide in terms of the spectral width and energy position. The observed differences are attributed to the consequences of the U 5f, 6d-4d(3d) hybridization in UMeC2. Calculations of the U M4 HERFD-XAS spectra were also performed using the Anderson impurity model (AIM). Based on the analysis of the data, the 5f occupancy in the ground state of UC was estimated to be 3.05 electrons. This finding is also supported by the analysis of U N4,5 XAS of UC and by the results of the AIM calculations of the U 4f X-ray photoelectron spectrum of UC.

8.
Chemistry ; 28(21): e202200119, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35179271

RESUMO

Reaction of the N-heterocylic carbene ligand i PrIm (L1 ) and lithium bis(trimethylsilyl)amide (TMSA) as a base with UCl4 resulted in U(IV) and U(V) complexes. Uranium's +V oxidation state in (HL1 )2 [U(V)(TMSI)Cl5 ] (TMSI=trimethylsilylimido) (2) was confirmed by HERFD-XANES measurements. Solid state characterization by SC-XRD and geometry optimisation of [U(IV)(L1 )2 (TMSA)Cl3 ] (1) indicated a silylamido ligand mediated inverse trans influence (ITI). The ITI was examined regarding different metal oxidation states and was compared to transition metal analogues by theoretical calculations.

9.
Chem Commun (Camb) ; 58(3): 327-342, 2022 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34874022

RESUMO

In recent years, scientists have progressively recognized the role of electronic structures in the characterization of chemical properties for actinide containing materials. High-energy resolution X-ray spectroscopy at the actinide M4,5 edges emerged as a promising direction because this method can probe actinide properties at the atomic level through the possibility of reducing the experimental spectral width below the natural core-hole lifetime broadening. Parallel to the technical developments of the X-ray method and experimental discoveries, theoretical models, describing the observed electronic structure phenomena, have also advanced. In this feature article, we describe the latest progress in the field of high-energy resolution X-ray spectroscopy at the actinide M4,5 and ligand K edges and we show that the methods are able to (a) provide fingerprint information on the actinide oxidation state and ground state characters (b) probe 5f occupancy, non-stoichiometry, defects, and ligand/metal ratio and (c) investigate the local symmetry and effects of the crystal field. We discuss the chemical aspects of the electronic structure in terms familiar to chemists and materials scientists and conclude with a brief description of new opportunities and approaches to improve the experimental methodology and theoretical analysis for f-electron systems.

10.
J Chem Phys ; 155(16): 164103, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34717360

RESUMO

The application of core-to-core (3d-to-4f) resonant inelastic x-ray scattering (RIXS) and high-energy-resolution fluorescence-detected x-ray absorption (HERFD-XAS) at actinide M4,5 edges, as techniques with the enhanced sensitivity to changes in the chemical state, was analyzed for trivalent actinide compounds. As an example, a series of actinide chlorides AnCl3 (An = U, Np, Pu, Am, Cm, Bk, and Cf) was used. The crystal-field multiplet formalism was applied to calculate the 3d-4f RIXS maps, and the HERFD-XAS spectra were extracted as cuts of these RIXS maps along the incident energy axis at the constant emitted energy, corresponding to the maximum of the RIXS intensity. A relation between HERFD and conventional XAS methods was also examined. Despite some differences between profiles of the An M5 HERFD and conventional XAS spectra of trivalent actinides, the results of calculations indicate that the HERFD method can be used at the An M5 edge for monitoring even small variations in the An chemical state. As a whole, better agreement between the HERFD and XAS spectra was found for the An M4 edges as compared to the An M5 edges. By using the point charge electrostatic model, the dependence of the An M4,5 HERFD-XAS spectra on the An coordination number was studied, which indicates the significant sensitivity of the distribution of the An 5f states to the ligand structural arrangement around the An sites.

11.
J Phys Chem C Nanomater Interfaces ; 125(15): 8360-8368, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-34084262

RESUMO

The performance of hybrid perovskite materials in solar cells crucially depends on their electronic properties, and it is important to investigate contributions to the total electronic structure from specific components in the material. In a combined theoretical and experimental study of CH3NH3PbI3-methylammonium lead triiodide (MAPI)-and its bromide cousin CH3NH3PbBr3 (MAPB), we analyze nitrogen K-edge (N 1s-to-2p*) X-ray absorption (XA) spectra measured in MAPI and MAPB single crystals. This permits comparison of spectral features to the local character of unoccupied molecular orbitals on the CH3NH3 + (MA+) counterions and allows us to investigate how thermal fluctuations, hydrogen bonding, and halide-ion substitution influence the XA spectra as a measure of the local electronic structure. In agreement with the experiment, the simulated spectra for MAPI and MAPB show close similarity, except that the MAPB spectral features are blue-shifted by +0.31 eV. The shift is shown to arise from the intrinsic difference in the electronic structure of the two halide atoms rather than from structural differences between the materials. In addition, from the spectral sampling analysis of molecular dynamics simulations, clear correlations between geometric descriptors (N-C, N-H, and H···I/Br distances) and spectral features are identified and used to explain the spectral shapes.

12.
Inorg Chem ; 59(22): 16251-16264, 2020 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-33136396

RESUMO

A theoretical overview of the core-to-core (3d-4f) resonant inelastic X-ray scattering (RIXS) spectra of actinide dioxides AnO2 (An = Th, U, Np, Pu, Am, Cu, Bk, Cf) is provided. The 3d-4f RIXS maps were calculated using crystal-field multiplet theory and turned out to be significantly different at the An M5 vs M4 edges, because of selection rules and final state effects. The results of the calculations allowed for a general analysis of so-called high-energy-resolution fluorescence-detected X-ray absorption (HERFD-XAS) spectra. The cuts of the calculated RIXS maps along the incident energy axis at the constant emitted energy, corresponding to the maximum of the RIXS intensity, represented the HERFD spectra and provided their comparison with calculated conventional X-ray absorption (XAS) spectra with a reduced core-hole lifetime broadening at the An M5 and M4 edges. Although the An M5 HERFD profiles were found to depart from the X-ray absorption cross-section, in terms of appearing additional transitions, the results of calculations for the An M4 edges demonstrate overall better agreement between the HERFD and XAS spectra for most dioxides, keeping in mind a restricted HERFD resolution, because of the core-hole lifetime broadening in the final state. The results confirm the utility of HERFD for the An chemical state determination and indicate the importance of calculating the entire RIXS process in order to interpret the HERFD data correctly.

13.
Inorg Chem ; 59(17): 11889-11893, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32846087

RESUMO

The chemical properties of actinide materials are often predefined and described based on the data available for isostructural species. This is the case for potassium plutonyl (PuVI) carbonate, K4PuVIO2(CO3)3(cr), a complex relevant for nuclear technology and the environment, of which the crystallographic and thermodynamic properties of which are still lacking. We report here the synthesis and characterization of PuVI achieved by single-crystal X-ray diffraction analysis and high-energy-resolution fluorescence-detected X-ray absorption near-edge structure at the Pu M4-edge coupled with electronic structure calculations. The crystallographic properties of PuVI are compared with isostructural uranium (U) and neptunium (Np) compounds. Actinyl (AnVI) axial bond lengths, [O-AnVI-O]2+, are correlated between solid, K4AnVIO2(CO3)3(cr), and aqueous, [AnVIO2(CO3)3]4-(aq) species for the UVI-NpVI-PuVI series. The spectroscopic data are compared to KPuVO2CO3(cr) and PuIVO2(cr) to tackle the trend in the electronic structure of PuVI regarding the oxidation state changes and local structural modifications around the Pu atom.

14.
Nat Commun ; 11(1): 4001, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778661

RESUMO

Uranium (U) is a ubiquitous element in the Earth's crust at ~2 ppm. In anoxic environments, soluble hexavalent uranium (U(VI)) is reduced and immobilized. The underlying reduction mechanism is unknown but likely of critical importance to explain the geochemical behavior of U. Here, we tackle the mechanism of reduction of U(VI) by the mixed-valence iron oxide, magnetite. Through high-end spectroscopic and microscopic tools, we demonstrate that the reduction proceeds first through surface-associated U(VI) to form pentavalent U, U(V). U(V) persists on the surface of magnetite and is further reduced to tetravalent UO2 as nanocrystals (~1-2 nm) with random orientations inside nanowires. Through nanoparticle re-orientation and coalescence, the nanowires collapse into ordered UO2 nanoclusters. This work provides evidence for a transient U nanowire structure that may have implications for uranium isotope fractionation as well as for the molecular-scale understanding of nuclear waste temporal evolution and the reductive remediation of uranium contamination.

15.
Chem Commun (Camb) ; 56(67): 9608-9611, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32686799

RESUMO

A general strategy for the determination of Tc oxidation state by new approach involving X-ray absorption near edge spectroscopy (XANES) at the Tc L3 edge is shown. A comprehensive series of 99Tc compounds, ranging from oxidation states I to VII, was measured and subsequently simulated within the framework of crystal-field multiplet theory. The observable trends in the absorption edge energy shift in combination with the spectral shape allow for a deeper understanding of complicated Tc coordination chemistry. This approach can be extended to numerous studies of Tc systems as this method is one of the most sensitive methods for accurate Tc oxidation state and ligand characterization.

16.
Nanoscale ; 12(35): 18039-18048, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32648876

RESUMO

The nanoscience field often produces results more mystifying than any other discipline. It has been argued that changes in the plutonium dioxide (PuO2) particle size from bulk to nano can have a drastic effect on PuO2 properties. Here we report a full characterization of PuO2 nanoparticles (NPs) at the atomic level and probe their local and electronic structures by a variety of methods available at the synchrotron, including extended X-ray absorption fine structure (EXAFS) at the Pu L3 edge, X-ray absorption near edge structure (XANES) in high energy resolution fluorescence detection (HERFD) mode at the Pu L3 and M4 edges, high energy X-ray scattering (HEXS) and X-ray diffraction (XRD). The particles were synthesized from precursors with different oxidation states of plutonium (III, IV, and V) under various environmentally and waste storage relevant conditions (pH 8 and pH > 10). Our experimental results analyzed with state-of-the-art theoretical approaches demonstrate that well dispersed, crystalline NPs with a size of ∼2.5 nm in diameter are always formed in spite of diverse chemical conditions. Identical crystal structures and the presence of only the Pu(iv) oxidation state in all NPs, reported here for the first time, indicate that the structure of PuO2 NPs is very similar to that of the bulk PuO2. All methods give complementary information and show that investigated fundamental properties of PuO2 NPs, rather than being exotic, are very similar to those of the bulk PuO2.

17.
Angew Chem Int Ed Engl ; 58(49): 17558-17562, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31621992

RESUMO

Here we provide evidence that the formation of PuO2 nanoparticles from oxidized PuVI under alkaline conditions proceeds through the formation of an intermediate PuV solid phase, similar to NH4 PuO2 CO3 , which is stable over a period of several months. For the first time, state-of-the-art experiments at Pu M4 and at L3 absorption edges combined with theoretical calculations unambiguously allow to determine the oxidation state and the local structure of this intermediate phase.

18.
Nanoscale ; 11(39): 18142-18149, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31555787

RESUMO

Understanding the complex chemistry of functional nanomaterials is of fundamental importance. Controlled synthesis and characterization at the atomic level is essential to gain deeper insight into the unique chemical reactivity exhibited by many nanomaterials. Cerium oxide nanoparticles have many industrial and commercial applications, resulting from very strong catalytic, pro- and anti-oxidant activity. However, the identity of the active species and the chemical mechanisms imparted by nanoceria remain elusive, impeding the further development of new applications. Here, we explore the behavior of cerium oxide nanoparticles of different sizes at different temperatures and trace the electronic structure changes by state-of-the-art soft and hard X-ray experiments combined with computational methods. We confirm the absence of the Ce(iii) oxidation state at the surface of CeO2 nanoparticles, even for particles as small as 2 nm. Synchrotron X-ray absorption experiments at Ce L3 and M5 edges, combined with X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM) and small angle X-ray scattering (SAXS) and theoretical calculations demonstrate that in addition to the nanoceria charge stability, the formation of hydroxyl groups at the surface profoundly affects the chemical performance of these nanomaterials.

19.
Phys Chem Chem Phys ; 21(20): 10635-10643, 2019 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-31080986

RESUMO

Developing characterization techniques and analysis methods adapted to the investigation of nanoparticles (NPs) is of fundamental importance considering the role of these materials in many fields of research. The study of actinide based NPs, despite their environmental relevance, is still underdeveloped compared to that of NPs based on stable and lighter elements. We present here an investigation of ThO2 NPs performed with High-Energy Resolution Fluorescence Detected (HERFD) X-ray Absorption Near-Edge Structure (XANES) and with ab initio XANES simulations. The first post-edge feature of Th L3 edge HERFD XANES disappears in small NPs and simulations considering non-relaxed structural models reproduce the trends observed in experimental data. Inspection of the simulations of Th atoms in the core and on the surface of the NP indeed demonstrates that the first post-edge feature is very sensitive to the lowering of the number of coordinating atoms and therefore to the more exposed Th atoms at the surface of the NP. The sensitivity of the L3 edge HERFD XANES to low coordinated atoms at the surface stems from the hybridization of the d-Density of States (DOS) of Th with both O and Th neighboring atoms. This may be a common feature to other oxide systems that can be exploited to investigate surface interactions.

20.
Chem Commun (Camb) ; 54(70): 9757-9760, 2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30109321

RESUMO

The valence band electronic structures of mixed uranium oxides (UO2, U4O9, U3O7, U3O8, and ß-UO3) have been studied using the resonant inelastic X-ray scattering (RIXS) technique at the U M5 edge and computational methods. We show here that the RIXS technique and recorded U 5f-O 2p charge transfer excitations can be used to test the validity of theoretical approximations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...