Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 18(1): 65-74, 2009 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-18826960

RESUMO

Maintenance of an intact mitochondrial genome is essential for oxidative phosphorylation in all eukaryotes. Depletion of mitochondrial genome copy number can have severe pathological consequences due to loss of respiratory capacity. In Saccharomyces cerevisiae, several bifunctional metabolic enzymes have been shown to be required for mitochondrial DNA (mtDNA) maintenance. For example, Ilv5 is required for branched chain amino acid biosynthesis and mtDNA stability. We have identified OXA1 and TIM17 as novel multicopy suppressors of mtDNA instability in ilv5 cells. In addition, overexpression of TIM17, but not OXA1, prevents the complete loss of mtDNA in cells lacking the TFAM homologue Abf2. Introduction of the disease-associated A3243G mutant mtDNA into human NT2 teratocarcinoma cells frequently causes mtDNA loss. Yet when human TIM17A is overexpressed in NT2 cybrids carrying A3243G mtDNA, the proportion of cybrid clones maintaining mtDNA increases significantly. TIM17A overexpression results in long-term mtDNA stabilization, since NT2 cybrids overexpressing TIM17A maintain mtDNA at levels similar to controls for several months. Tim17 is a conserved suppressor of mtDNA instability and is the first factor to be identified that can prevent mtDNA loss in a human cellular model of mitochondrial disease.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Doenças Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Expressão Gênica , Humanos , Proteínas de Membrana Transportadoras/genética , Doenças Mitocondriais/genética , Proteínas de Transporte da Membrana Mitocondrial , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Proteínas Mitocondriais/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Mutação Puntual , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Teratocarcinoma/genética , Teratocarcinoma/metabolismo , Células Tumorais Cultivadas
2.
J Cell Sci ; 121(11): 1861-8, 2008 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-18477605

RESUMO

Mitochondrial DNA is organized as a nucleoprotein complex called the nucleoid. Its major protein components have been identified in different organisms, but it is yet unknown whether nucleoids undergo any form of remodeling. Using an in organello ChIP-on-chip assay, we demonstrate that the DNA-bending protein Abf2 binds to most of the mitochondrial genome with a preference for GC-rich gene sequences. Thus, Abf2 is a bona fide mitochondrial DNA-packaging protein in vivo. Nucleoids form a more open structure under respiring growth conditions in which the ratio of Abf2 to mitochondrial DNA is decreased. Bifunctional nucleoid proteins Hsp60 and Ilv5 are recruited to nucleoids during glucose repression and amino-acid starvation, respectively. Thus, mitochondrial nucleoids in yeast are dynamic structures that are remodeled in response to metabolic cues. A mutant form of Hsp60 that causes mtDNA instability has altered submitochondrial localization, which suggests that nucleoid remodeling is essential for the maintenance of mitochondrial genome.


Assuntos
Respiração Celular/genética , DNA Mitocondrial/metabolismo , Proteínas de Ligação a DNA/metabolismo , Mitocôndrias/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Leveduras/metabolismo , Oxirredutases do Álcool/metabolismo , Aminoácidos/metabolismo , Linhagem Celular , Chaperonina 60/metabolismo , Montagem e Desmontagem da Cromatina/genética , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Regulação Fúngica da Expressão Gênica/genética , Glucose/metabolismo , Mitocôndrias/genética , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Transcrição/genética , Leveduras/genética
3.
Mol Cell Biol ; 28(2): 551-63, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17984223

RESUMO

Cells of the budding yeast Saccharomyces cerevisiae sense extracellular amino acids and activate expression of amino acid permeases through the SPS-sensing pathway, which consists of Ssy1, an amino acid sensor on the plasma membrane, and two downstream factors, Ptr3 and Ssy5. Upon activation of SPS signaling, two transcription factors, Stp1 and Stp2, undergo Ssy5-dependent proteolytic processing that enables their nuclear translocation. Here we show that Ptr3 is a phosphoprotein whose hyperphosphorylation is increased by external amino acids and is dependent on Ssy1 but not on Ssy5. A deletion mutation in GRR1, encoding a component of the SCF(Grr1) E3 ubiquitin ligase, blocks amino acid-induced hyperphosphorylation of Ptr3. We found that two casein kinase I (CKI) proteins, Yck1 and Yck2, previously identified as positive regulators of SPS signaling, are required for hyperphosphorylation of Ptr3. Loss- and gain-of-function mutations in PTR3 result in decreased and increased Ptr3 hyperphosporylation, respectively. We found that a defect in PP2A phosphatase activity leads to the hyperphosphorylation of Ptr3 and constitutive activation of SPS signaling. Two-hybrid analysis revealed interactions between the N-terminal signal transduction domain of Ssy1 with Ptr3 and Yck1. Our findings reveal that CKI and PP2A phosphatase play antagonistic roles in SPS sensing by regulating Ptr3 phosphorylation.


Assuntos
Aminoácidos/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Proteínas de Transporte/genética , Caseína Quinase I/genética , Caseína Quinase I/metabolismo , Proteínas de Membrana/genética , Mutação/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
FEBS Lett ; 581(29): 5658-63, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18022394

RESUMO

E153 is a respiratory deficient mutant of Saccharomyces cerevisiae with a mutation in the active site of the Sit4p protein phosphatase. Measurements of mitochondrial respiration and cytochromes indicate that the mutation suppresses glucose repression. The escape from catabolite repression is accompanied by a marked reduction of the transcriptional repressor Mig1p. The presence of normal levels of MIG1 mRNA in the mutant and its association with the polysome fraction suggests that depletion of Mig1p is the result of protein degradation. This study shows that in addition to phosphorylation by Snf1p, the transcriptional repressor activity of Mig1p is also regulated by a post-transcriptional Sit4p-dependent pathway. Our evidence suggests that this pathway involves turnover of Mig1p.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteína Fosfatase 2/metabolismo , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Proteínas de Ligação a DNA/genética , Modelos Biológicos , Mutação , Fenótipo , Fosforilação , Proteína Fosfatase 2/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais
5.
Trends Cell Biol ; 17(12): 586-92, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17981466

RESUMO

Mitochondrial DNA (mtDNA) is organized in nucleoprotein particles called nucleoids. Each nucleoid, which is considered a heritable unit of mtDNA, might contain several copies of the mitochondrial genome and several different proteins. Some nucleoid-associated proteins, such as the high mobility group (HMG) box family, have well defined functions in mtDNA maintenance and packaging; others, such as Aco1 and IIv5, are bifunctional, fulfilling their roles in nucleoids in addition to well established metabolic functions. The fact that the HMG box mtDNA packaging proteins are of eukaryotic rather than bacterial origin and also that every organism seems to have a unique set of nucleoid-associated proteins suggests that evolutionary tinkering occurred to reinvent mitochondrial nucleoprotein during the evolution of mitochondrial genomes.


Assuntos
DNA Mitocondrial/metabolismo , Evolução Molecular , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , DNA Mitocondrial/ultraestrutura , Regulação da Expressão Gênica , Genoma Mitocondrial , Humanos , Mitocôndrias/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 104(34): 13738-43, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17698960

RESUMO

Aconitase (Aco1p) is a multifunctional protein: It is an enzyme of the tricarboxylic acid cycle. In animal cells, Aco1p also is a cytosolic protein binding to mRNAs to regulate iron metabolism. In yeast, Aco1p was identified as a component of mtDNA nucleoids. Here we show that yeast Aco1p protects mtDNA from excessive accumulation of point mutations and ssDNA breaks and suppresses reductive recombination of mtDNA. Aconitase binds to both ds- and ssDNA, with a preference for GC-containing sequences. Therefore, mitochondria are opportunistic organelles that seize proteins, such as metabolic enzymes, for construction of the nucleoid, an mtDNA maintenance/segregation apparatus.


Assuntos
Aconitato Hidratase/metabolismo , DNA Mitocondrial/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Aconitato Hidratase/química , Aconitato Hidratase/genética , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA/genética , DNA Mitocondrial/metabolismo , DNA Recombinante/genética , DNA de Cadeia Simples/genética , Genoma Fúngico/genética , Modelos Moleculares , Mutação/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Annu Rev Genet ; 40: 159-85, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16771627

RESUMO

Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus under normal and pathophysiological conditions. The best understood of such pathways is retrograde signaling in the budding yeast Saccharomyces cerevisiae. It involves multiple factors that sense and transmit mitochondrial signals to effect changes in nuclear gene expression; these changes lead to a reconfiguration of metabolism to accommodate cells to defects in mitochondria. Analysis of regulatory factors has provided us with a mechanistic view of regulation of retrograde signaling. Here we review advances in the yeast retrograde signaling pathway and highlight its regulatory factors and regulatory mechanisms, its physiological functions, and its connection to nutrient sensing, TOR signaling, and aging.


Assuntos
Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Núcleo Celular/metabolismo , Senescência Celular/fisiologia , DNA Mitocondrial/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/genética , Modelos Biológicos , Proteínas Serina-Treonina Quinases , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcrição Gênica
8.
Nat Rev Genet ; 6(11): 815-25, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16304597

RESUMO

Mitochondrial DNA (mtDNA) encodes essential components of the cellular energy-producing apparatus, and lesions in mtDNA and mitochondrial dysfunction contribute to numerous human diseases. Understanding mtDNA organization and inheritance is therefore an important goal. Recent studies have revealed that mitochondria use diverse metabolic enzymes to organize and protect mtDNA, drive the segregation of the organellar genome, and couple the inheritance of mtDNA with cellular metabolism. In addition, components of a membrane-associated mtDNA segregation apparatus that might link mtDNA transmission to mitochondrial movements are beginning to be identified. These findings provide new insights into the mechanisms of mtDNA maintenance and inheritance.


Assuntos
DNA Mitocondrial/genética , Metabolismo Energético/genética , Genoma Humano/genética , Mitocôndrias/genética , Doenças Mitocondriais/genética , Animais , Genoma Fúngico , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/metabolismo , Xenopus laevis , Leveduras
9.
J Biol Chem ; 280(52): 42528-35, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16253991

RESUMO

Retrograde (RTG) signaling senses mitochondrial dysfunction and initiates readjustments of carbohydrate and nitrogen metabolism through nuclear accumulation of the heterodimeric transcription factors, Rtg1/3p. The RTG pathway is also linked to target of rapamycin (TOR) signaling, among whose activities is transcriptional control of nitrogen catabolite repression (NCR)-sensitive genes. To investigate the connections between these two signaling pathways, we have analyzed rapamycin sensitivity of the expression of the RTG target gene CIT2 and of two NCR-sensitive genes, GLN1 and DAL5, in respiratory-competent (rho+) and -incompetent (rho0) yeast cells. Here we have presented evidence that retrograde gene expression is separable from TOR regulation of RTG- and NCR-responsive genes. We showed that expression of these two classes of genes is differentially regulated by glutamate starvation whether in response to mitochondrial dysfunction or induced by rapamycin treatment, as well by glutamine or histidine starvation. We also showed that Lst8p, a component of the TOR1/2 complexes and a negative regulator of the RTG pathway, has multiple roles in the regulation of RTG- and NCR-sensitive genes. Lst8p negatively regulates CIT2 and GLN1 expression, whereas DAL5 expression is independent of Lst8p function. DAL5 expression depends on the GATA transcription factors Gln3p and Gat1p. Gat1p is translocated to the nucleus only upon TOR inhibition by rapamycin. Altogether, these data show that Rtg1/3p, Gln3p, and Gat1p can be differentially regulated through different nutrient-sensing pathways, such as TOR and retrograde signaling, and by multiple factors, such as Lst8p, which is suggested to have a role in connecting the RTG and TOR pathways.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Proteínas de Ciclo Celular/biossíntese , Regulação Fúngica da Expressão Gênica , Mitocôndrias/patologia , Fosfatidilinositol 3-Quinases/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/biossíntese , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Alelos , Northern Blotting , Núcleo Celular/metabolismo , Dimerização , Glutamato-Amônia Ligase/metabolismo , Glutamatos/metabolismo , Glutamina/química , Proteínas de Fluorescência Verde/metabolismo , Histidina/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Microscopia de Fluorescência , Modelos Biológicos , Modelos Genéticos , Mutação , Nitrogênio/química , Plasmídeos/metabolismo , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Transcrição Gênica
10.
Mol Biol Cell ; 16(10): 4893-904, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16093347

RESUMO

Yeast cells respond to mitochondrial dysfunction by altering the expression of a subset of nuclear genes, a process known as retrograde signaling (RS). RS terminates with two transcription factors, Rtg1p and Rtg3p. One positive regulator, Rtg2p, and four negative regulators, Lst8p, Mks1p, and the redundant 14-3-3 proteins, Bmh1p and Bmh2p, control RS upstream of Rtg1/3p. Mks1p is negatively regulated by binding to Rtg2p and positively regulated when bound to Bmh1/2p. Here we report that Grr1p, a component of the SCF(Grr1) E3 ubiquitin ligase, modulates RS by affecting Mks1p levels. Grr1p polyubiquitinates Mks1p not bound to either Rtg2p or to Bmh1/2p, targeting it for degradation. An acidic domain region of Mks1p constitutes the portable Mks1p degron sequence. We have isolated dominant mutations in Grr1p leading to increased Mks1p degradation. These mutations result in a gain of positive charge on the concave surface of the leucine rich repeat (LRR) domain of Grr1p, the proposed substrate binding site. We propose that Mks1p is a central player of RS and is acted upon by multiple regulators of the pathway.


Assuntos
Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/fisiologia , Ubiquitina-Proteína Ligases/fisiologia , Proteínas 14-3-3 , Sequência de Aminoácidos , Sítios de Ligação , Proteínas F-Box , Peptídeos e Proteínas de Sinalização Intracelular , Leucina/genética , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/genética , Ubiquitina-Proteína Ligases/genética
11.
Gene ; 354: 2-8, 2005 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-15967597

RESUMO

Retrograde signaling mediates nuclear gene expression in response to changes in the functional state of mitochondria. In budding yeast, retrograde signaling, also termed the RTG pathway, relies on the heterodimeric, basic helix-loop-helix zipper transcription factors, Rtg1p and Rtg3p, for the activation of target gene expression. Activation of the RTG pathway leads to partial dephosphorylation of Rtg3p and its translocation, together with Rtg1p, from the cytoplasm to the nucleus. These processes depend on a positive regulatory factor, Rtg2p, a novel protein with a ATP binding domain similar to that of the Hsp70/actin/sugar kinase superfamily. Four negative regulatory factors, Lst8p, Mks1p, and two redundant 14-3-3 proteins, Bmh1/2p, function between Rtg2p and Rtg1/3p. Alternative interaction between Mks1p and Rtg2p or Bmh1/2p provides a means for regulation of the RTG pathway. When the RTG pathway is on, Mks1p is inactivated by its association with Rtg2p; and when the RTG pathway is off, Mks1p dissociates from Rtg2p and forms a complex with Bmh1/2p, which is the negative regulatory form of Mks1p. Here we show that Rtg2p and Mks1p can interact in the absence of other factors, and is thereby the minimal binary switch for regulation of the RTG pathway. Gel filtration experiments indicate that both Rtg2p and Mks1p exist in high molecular weight complexes. In response to changes in the activity of the RTG pathway, both Rtg2p and Mks1p shift to different sized high molecular weight complexes. Together, our data suggest that dynamic association between Mks1p and Rtg2p in high molecular weight complexes provides a means to regulate the RTG pathway.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo , Western Blotting , Divisão Celular/efeitos dos fármacos , Divisão Celular/genética , Núcleo Celular/metabolismo , Cromatografia em Gel/métodos , Eletroforese em Gel de Poliacrilamida , Glutamatos/farmacologia , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/metabolismo , Peso Molecular , Mutação , Ligação Proteica , Proteínas Repressoras/química , Proteínas Repressoras/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais/genética , Fatores de Transcrição/química , Fatores de Transcrição/genética
12.
Science ; 307(5710): 714-7, 2005 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-15692048

RESUMO

Mitochondrial DNA (mtDNA) is essential for cells to maintain respiratory competency and is inherited as a protein-DNA complex called the nucleoid. We have identified 22 mtDNA-associated proteins in yeast, among which is mitochondrial aconitase (Aco1p). We show that this Krebs-cycle enzyme is essential for mtDNA maintenance independent of its catalytic activity. Regulation of ACO1 expression by the HAP and retrograde metabolic signaling pathways directly affects mtDNA maintenance. When constitutively expressed, Aco1p can replace the mtDNA packaging function of the high-mobility-group protein Abf2p. Thus, Aco1p may integrate metabolic signals and mtDNA maintenance.


Assuntos
DNA Fúngico/metabolismo , DNA Mitocondrial/metabolismo , Proteína 1 Reguladora do Ferro/metabolismo , Saccharomyces cerevisiae/metabolismo , Alelos , Substituição de Aminoácidos , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Fator de Ligação a CCAAT/genética , Fator de Ligação a CCAAT/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Fúngicos , Glucose/metabolismo , Proteína 1 Reguladora do Ferro/genética , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Esporos Fúngicos/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transformação Genética
13.
Biochem Biophys Res Commun ; 318(4): 1031-8, 2004 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-15147977

RESUMO

In yeast the P-type Ca(2+)-ATPase of the Golgi apparatus, Pmr1p, is the most important player in calcium homeostasis. In Kluyveromyces lactis KlPMR1 inactivation leads to pleiotropic phenotypes, including reduced N-glycosylation and altered cell wall morphogenesis. To study the physiology of K. lactis when KlPMR1 was inactivated microarrays containing all Saccharomyces cerevisiae coding sequences were utilized. Alterations in O-glycosylation, consistent with the repression of KlPMT2, were found and a terminal N-acetylglucosamine in the O-glycans was identified. Klpmr1Delta cells showed increased expression of PIRs, proteins involved in cell wall maintenance, suggesting that responses to cell wall weakening take place in K. lactis. We found over-expression of KlPDA1 and KlACS2 genes involved in the Acetyl-CoA synthesis and down-regulation of KlIDP1, KlACO1, and KlSDH2 genes involved in respiratory metabolism. Increases in oxygen consumption and succinate dehydrogenase activity were also observed in mutant cells. The described approach highlighted the unexpected involvement of KlPMR1 in energy-yielding processes.


Assuntos
ATPases Transportadoras de Cálcio/deficiência , ATPases Transportadoras de Cálcio/metabolismo , Complexo de Golgi/enzimologia , Kluyveromyces/enzimologia , Mitocôndrias/metabolismo , Acetilglucosamina/metabolismo , ATPases Transportadoras de Cálcio/genética , Sequência de Carboidratos , Parede Celular/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Expressão Gênica , Genes Fúngicos/genética , Glicosilação , Kluyveromyces/citologia , Kluyveromyces/genética , Kluyveromyces/crescimento & desenvolvimento , Dados de Sequência Molecular , Fases de Leitura Aberta/genética , RNA Mensageiro/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Succinato Desidrogenase/metabolismo
14.
Mol Cell ; 14(1): 1-15, 2004 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-15068799

RESUMO

Mitochondrial retrograde signaling is a pathway of communication from mitochondria to the nucleus that influences many cellular and organismal activities under both normal and pathophysiological conditions. In yeast it is used as a sensor of mitochondrial dysfunction that initiates readjustments of carbohydrate and nitrogen metabolism. In both yeast and animal cells, retrograde signaling is linked to TOR signaling, but the precise connections are unclear. In mammalian cells, mitochondrial dysfunction sets off signaling cascades through altered Ca(2+) dynamics, which activate factors such as NFkappaB, NFAT, and ATF. Retrograde signaling also induces invasive behavior in otherwise nontumorigenic cells implying a role in tumor progression.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Mitocôndrias/metabolismo , Transdução de Sinais/fisiologia , Envelhecimento/fisiologia , Animais , Proteínas de Transporte/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/metabolismo
15.
J Cell Biol ; 163(3): 457-61, 2003 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-14597775

RESUMO

The yeast mitochondrial chaperonin Hsp60 has previously been implicated in mitochondrial DNA (mtDNA) transactions: it is found in mtDNA nucleoids associated with single-stranded DNA; it binds preferentially to the template strand of active mtDNA ori sequences in vitro; and wild-type (rho+) mtDNA is unstable in hsp60 temperature-sensitive (ts) mutants grown at the permissive temperature. Here we show that the mtDNA instability is caused by a defect in mtDNA transmission to daughter cells. Using high resolution, fluorescence deconvolution microscopy, we observe a striking alteration in the morphology of mtDNA nucleoids in rho+ cells of an hsp60-ts mutant that suggests a defect in nucleoid division. We show that rho- petite mtDNA consisting of active ori repeats is uniquely unstable in the hsp60-ts mutant. This instability of ori rho- mtDNA requires transcription from the canonical promoter within the ori element. Our data suggest that the nucleoid dynamics underlying mtDNA transmission are regulated by the interaction between Hsp60 and mtDNA ori sequences.


Assuntos
Chaperonina 60/metabolismo , DNA Mitocondrial/genética , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo , Divisão Celular/genética , Chaperonina 60/genética , Replicação do DNA/genética , Mitocôndrias/genética , Mutação/genética , Regiões Promotoras Genéticas/genética , Origem de Replicação/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica/genética
16.
Mol Cell ; 12(2): 401-11, 2003 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-14536080

RESUMO

Activation of retrograde signaling (RS) by mitochondrial dysfunction or by inhibition of TOR kinases in yeast results in nuclear accumulation of the transcription factors, Rtg1p and Rtg3p. This process requires Rtg2p, a novel cytoplasmic protein with an N-terminal ATP binding domain. We show that Rtg2p controls RS by reversibly binding a negative regulator, Mks1p. The inhibitory form of Mks1p is phosphorylated and complexed with the 14-3-3 proteins, Bmh1p and Bmh2p, which are also negative regulators of RS. A hypophosphorylated form of Mks1p bound to Rtg2p is inactive. Point mutations in the Rtg2p ATP binding domain simultaneously block RS and Mks1p-Rtg2p interaction. We propose that activation of RS via mitochondrial dysfunction and TOR inhibition intersect at the Rtg2p-Mks1p switch.


Assuntos
Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Proteínas 14-3-3 , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , Citoplasma/metabolismo , Proteínas Fúngicas/metabolismo , Regulação da Expressão Gênica , Biblioteca Gênica , Genes Dominantes , Proteínas de Fluorescência Verde , Immunoblotting , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Modelos Genéticos , Dados de Sequência Molecular , Mutagênese , Mutação , Fosforilação , Plasmídeos/metabolismo , Mutação Puntual , Testes de Precipitina , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Sirolimo/farmacologia , Transcrição Gênica , Tirosina 3-Mono-Oxigenase/metabolismo , beta-Galactosidase/metabolismo
17.
J Biol Chem ; 278(46): 45882-7, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-12966084

RESUMO

Respiratory deficient yeast cells such as rhoo petites activate an inter-organelle signaling pathway called retrograde regulation. This results in changes in the expression of a subset of nuclear genes leading to major reconfigurations of metabolism that enable cells to adapt to the respiratory deficient state. Previous studies have focused on the role of three positive regulatory factors in the retrograde pathway, Rtg1p, Rtg2p, and Rtg3p, which are essential for both basal and elevated expressions of some, but not all, retrograde responsive genes. Here we characterize the retrograde regulation of one of those genes, ATO3, whose elevated expression in rhoo petites is largely independent of RTG gene function. ATO3 encodes a member of the YaaH family of proteins that is a putative outward ammonium transporter. We show that Ato3p-green fluorescent protein is preferentially localized to the plasma membrane of mother cells. rhoo petites express more Ato3p-green fluorescent protein in their plasma membrane than do rho+ cells, consistent with the elevated level of ATO3 transcripts in rhoo cells. We find that ATO3 expression has two levels of control, both of which are connected to amino acid sensing and regulation. The first involves GCN4, which is required for the bulk of ATO3 expression. The second involves the Ssy1-Ptr3-Ssy5 amino acid sensor system, which is preferentially required for elevated ATO3 expression in rhoo cells. We propose that ATO3 is induced in rhoo cells to eliminate the excess ammonia that arises because of a potential defect in ammonia assimilation in those cells.


Assuntos
Aminoácidos/química , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Fúngica da Expressão Gênica , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/fisiologia , Proteínas Quinases/metabolismo , Compostos de Amônio Quaternário/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Northern Blotting , Proteínas Fúngicas/química , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Microscopia de Fluorescência , Consumo de Oxigênio , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Compostos de Amônio Quaternário/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , beta-Galactosidase/metabolismo
18.
Mol Biol Cell ; 14(3): 958-72, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12631716

RESUMO

To understand the many roles of the Krebs tricarboxylic acid (TCA) cycle in cell function, we used DNA microarrays to examine gene expression in response to TCA cycle dysfunction. mRNA was analyzed from yeast strains harboring defects in each of 15 genes that encode subunits of the eight TCA cycle enzymes. The expression of >400 genes changed at least threefold in response to TCA cycle dysfunction. Many genes displayed a common response to TCA cycle dysfunction indicative of a shift away from oxidative metabolism. Another set of genes displayed a pairwise, alternating pattern of expression in response to contiguous TCA cycle enzyme defects: expression was elevated in aconitase and isocitrate dehydrogenase mutants, diminished in alpha-ketoglutarate dehydrogenase and succinyl-CoA ligase mutants, elevated again in succinate dehydrogenase and fumarase mutants, and diminished again in malate dehydrogenase and citrate synthase mutants. This pattern correlated with previously defined TCA cycle growth-enhancing mutations and suggested a novel metabolic signaling pathway monitoring TCA cycle function. Expression of hypoxic/anaerobic genes was elevated in alpha-ketoglutarate dehydrogenase mutants, whereas expression of oxidative genes was diminished, consistent with a heme signaling defect caused by inadequate levels of the heme precursor, succinyl-CoA. These studies have revealed extensive responses to changes in TCA cycle function and have uncovered new and unexpected metabolic networks that are wired into the TCA cycle.


Assuntos
Ciclo do Ácido Cítrico/genética , Perfilação da Expressão Gênica , Regulação Fúngica da Expressão Gênica , Oxigênio/metabolismo , Transcrição Gênica , Aconitato Hidratase/genética , Aconitato Hidratase/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Complexo Cetoglutarato Desidrogenase/genética , Complexo Cetoglutarato Desidrogenase/metabolismo , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia
19.
J Biol Chem ; 277(49): 47946-53, 2002 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-12381727

RESUMO

Ilv5p is a bifunctional mitochondrial protein in Saccharomyces cerevisiae required for branched-chain amino acid biosynthesis and for the stability of wild-type (rho(+)) mitochondrial DNA (mtDNA). Mutant forms of Ilv5p defective in mtDNA stability (a(+)D(-)) are present as 5-10 punctate structures in mitochondria, whereas mutants lacking enzymatic function (a(-)D(+)) show a reticular distribution, as does wild-type Ilv5p. a(+)D(-) ilv5 mutations are recessive, and the mutant protein is redistributed to a reticular form when co-expressed with wild-type Ilv5p. Ilv5p proteins that are punctate in vivo are also less soluble in detergent extracts of isolated mitochondria, suggesting that the punctate foci in a(+)D(-) Ilv5p mutants are aggregates of the protein. a(+)D(-) Ilv5p proteins are selectively degraded in cells lacking a functional mitochondrial genome, but only in cells grown under derepressing conditions. The targeted degradation of a(+)D(-) Ilv5p, which occurs even when co-expressed with wild-type Ilv5p, is mediated by the glucose-repressible chaperone, Hsp78, and by the ATP-dependent Pim1p protease, whose activity may be modulated by rho(+) mtDNA.


Assuntos
Oxirredutases do Álcool/genética , DNA Mitocondrial/química , DNA Mitocondrial/genética , Proteínas Fúngicas/metabolismo , Proteínas de Choque Térmico/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Mutação , Proteínas de Saccharomyces cerevisiae , Serina Endopeptidases/metabolismo , Proteases Dependentes de ATP , Oxirredutases do Álcool/química , Western Blotting , Divisão Celular , Cromatografia , Glucose/farmacologia , Microscopia de Fluorescência , Proteínas Mitocondriais/química , Plasmídeos/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
20.
Genetics ; 161(3): 1043-52, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12136009

RESUMO

Ilv5p is a bifunctional yeast mitochondrial enzyme required for branched chain amino acid biosynthesis and for the stability of mitochondrial DNA (mtDNA) and its parsing into nucleoids. The latter occurs when the general amino acid control (GAC) pathway is activated. We have isolated ilv5 mutants that lack either the enzymatic (a(-)D(+)) or the mtDNA stability function (a(+)D(-)) of the protein. The affected residues in these two mutant classes cluster differently when mapped to the 3-D structure of the spinach ortholog of Ilv5p. a(-)D(+) mutations map to conserved internal domains known to be important for substrate and cofactor binding, whereas the a(+)D(-) mutations map to a C-terminal region on the surface of the protein. The a(+)D(-) mutants also have a temperature-sensitive phenotype when grown on a glycerol medium, which correlates with their degree of mtDNA instability. Analysis of an a(+)D(-) mutant with a strong mtDNA instability phenotype shows that it is also unable to parse mtDNA into nucleoids when activated by the GAC pathway. Finally, the wild-type Escherichia coli ortholog of Ilv5p behaves like a(+)D(-) mutants when expressed and targeted to mitochondria in ilv5Delta yeast cells, suggesting that yeast Ilv5p acquired its mtDNA function after the endosymbiotic event.


Assuntos
Oxirredutases do Álcool/genética , Aminoácidos/biossíntese , DNA Mitocondrial/genética , Proteínas Fúngicas/genética , Proteínas Mitocondriais/genética , Schizosaccharomyces/genética , Oxirredutases do Álcool/química , Sequência de Aminoácidos , Sequência de Bases , Análise Mutacional de DNA/métodos , Primers do DNA , Proteínas Fúngicas/química , Teste de Complementação Genética , Genótipo , Proteínas Mitocondriais/química , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Schizosaccharomyces/crescimento & desenvolvimento , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...