Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Brain Commun ; 6(3): fcae161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38764777

RESUMO

This paper outlines the therapeutic rationale and neurosurgical targeting technique for bilateral, closed-loop, thalamocortical stimulation in Lennox-Gastaut syndrome, a severe form of childhood-onset epilepsy. Thalamic stimulation can be an effective treatment for Lennox-Gastaut syndrome, but complete seizure control is rarely achieved. Outcomes may be improved by stimulating areas beyond the thalamus, including cortex, but the optimal targets are unknown. We aimed to identify a cortical target by synthesizing prior neuroimaging studies, and to use this knowledge to advance a dual thalamic (centromedian) and cortical (frontal) approach for closed-loop stimulation. Multi-modal brain network maps from three group-level studies of Lennox-Gastaut syndrome were averaged to define the area of peak overlap: simultaneous EEG-functional MRI of generalized paroxysmal fast activity, [18F]fluorodeoxyglucose PET of cortical hypometabolism and diffusion MRI structural connectivity associated with clinical efficacy in a previous trial of thalamic deep brain stimulation. The resulting 'hotspot' was used as a seed in a normative functional MRI connectivity analysis to identify connected networks. Intracranial electrophysiology was reviewed in the first two trial patients undergoing bilateral implantations guided by this hotspot. Simultaneous recordings from cortex and thalamus were analysed for presence and synchrony of epileptiform activity. The peak overlap was in bilateral premotor cortex/caudal middle frontal gyrus. Functional connectivity of this hotspot revealed a distributed network of frontoparietal cortex resembling the diffuse abnormalities seen on EEG-functional MRI and PET. Intracranial electrophysiology showed characteristic epileptiform activity of Lennox-Gastaut syndrome in both the cortical hotspot and thalamus; most detected events occurred first in the cortex before appearing in the thalamus. Premotor frontal cortex shows peak involvement in Lennox-Gastaut syndrome and functional connectivity of this region resembles the wider epileptic brain network. Thus, it may be an optimal target for a range of neuromodulation therapies, including thalamocortical stimulation and emerging non-invasive treatments like focused ultrasound or transcranial magnetic stimulation. Compared to thalamus-only approaches, the addition of this cortical target may allow more rapid detections of seizures, more diverse stimulation paradigms and broader modulation of the epileptic network. A prospective, multi-centre trial of closed-loop thalamocortical stimulation for Lennox-Gastaut syndrome is currently underway.

2.
Epilepsia ; 65(5): 1360-1373, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38517356

RESUMO

OBJECTIVES: Responsive neurostimulation (RNS) is an established therapy for drug-resistant epilepsy that delivers direct electrical brain stimulation in response to detected epileptiform activity. However, despite an overall reduction in seizure frequency, clinical outcomes are variable, and few patients become seizure-free. The aim of this retrospective study was to evaluate aperiodic electrophysiological activity, associated with excitation/inhibition balance, as a novel electrographic biomarker of seizure reduction to aid early prognostication of the clinical response to RNS. METHODS: We identified patients with intractable mesial temporal lobe epilepsy who were implanted with the RNS System between 2015 and 2021 at the University of Utah. We parameterized the neural power spectra from intracranial RNS System recordings during the first 3 months following implantation into aperiodic and periodic components. We then correlated circadian changes in aperiodic and periodic parameters of baseline neural recordings with seizure reduction at the most recent follow-up. RESULTS: Seizure reduction was correlated significantly with a patient's average change in the day/night aperiodic exponent (r = .50, p = .016, n = 23 patients) and oscillatory alpha power (r = .45, p = .042, n = 23 patients) across patients for baseline neural recordings. The aperiodic exponent reached its maximum during nighttime hours (12 a.m. to 6 a.m.) for most responders (i.e., patients with at least a 50% reduction in seizures). SIGNIFICANCE: These findings suggest that circadian modulation of baseline broadband activity is a biomarker of response to RNS early during therapy. This marker has the potential to identify patients who are likely to respond to mesial temporal RNS. Furthermore, we propose that less day/night modulation of the aperiodic exponent may be related to dysfunction in excitation/inhibition balance and its interconnected role in epilepsy, sleep, and memory.


Assuntos
Ritmo Circadiano , Epilepsia Resistente a Medicamentos , Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/terapia , Epilepsia do Lobo Temporal/fisiopatologia , Masculino , Feminino , Adulto , Ritmo Circadiano/fisiologia , Estudos Retrospectivos , Pessoa de Meia-Idade , Epilepsia Resistente a Medicamentos/terapia , Epilepsia Resistente a Medicamentos/fisiopatologia , Convulsões/fisiopatologia , Convulsões/terapia , Estimulação Encefálica Profunda/métodos , Resultado do Tratamento , Adulto Jovem , Eletroencefalografia/métodos
3.
Brain ; 147(2): 521-531, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37796038

RESUMO

In patients with drug-resistant epilepsy, electrical stimulation of the brain in response to epileptiform activity can make seizures less frequent and debilitating. This therapy, known as closed-loop responsive neurostimulation (RNS), aims to directly halt seizure activity via targeted stimulation of a burgeoning seizure. Rather than immediately stopping seizures as they start, many RNS implants produce slower, long-lasting changes in brain dynamics that better predict clinical outcomes. Here we hypothesize that stimulation during brain states with less epileptiform activity drives long-term changes that restore healthy brain networks. To test this, we quantified stimulation episodes during low- and high-risk brain states-that is, stimulation during periods with a lower or higher risk of generating epileptiform activity-in a cohort of 40 patients treated with RNS. More frequent stimulation in tonic low-risk states and out of rhythmic high-risk states predicted seizure reduction. Additionally, stimulation events were more likely to be phase-locked to prolonged episodes of abnormal activity for intermediate and poor responders when compared to super-responders, consistent with the hypothesis that improved outcomes are driven by stimulation during low-risk states. These results support the hypothesis that stimulation during low-risk periods might underlie the mechanisms of RNS, suggesting a relationship between temporal patterns of neuromodulation and plasticity that facilitates long-term seizure reduction.


Assuntos
Estimulação Encefálica Profunda , Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Estimulação Encefálica Profunda/métodos , Epilepsia/terapia , Convulsões/terapia , Encéfalo , Epilepsia Resistente a Medicamentos/terapia
4.
Nat Med ; 29(12): 3162-3174, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38049620

RESUMO

Converging evidence indicates that impairments in executive function and information-processing speed limit quality of life and social reentry after moderate-to-severe traumatic brain injury (msTBI). These deficits reflect dysfunction of frontostriatal networks for which the central lateral (CL) nucleus of the thalamus is a critical node. The primary objective of this feasibility study was to test the safety and efficacy of deep brain stimulation within the CL and the associated medial dorsal tegmental (CL/DTTm) tract.Six participants with msTBI, who were between 3 and 18 years post-injury, underwent surgery with electrode placement guided by imaging and subject-specific biophysical modeling to predict activation of the CL/DTTm tract. The primary efficacy measure was improvement in executive control indexed by processing speed on part B of the trail-making test.All six participants were safely implanted. Five participants completed the study and one was withdrawn for protocol non-compliance. Processing speed on part B of the trail-making test improved 15% to 52% from baseline, exceeding the 10% benchmark for improvement in all five cases.CL/DTTm deep brain stimulation can be safely applied and may improve executive control in patients with msTBI who are in the chronic phase of recovery.ClinicalTrials.gov identifier: NCT02881151 .


Assuntos
Lesões Encefálicas Traumáticas , Estimulação Encefálica Profunda , Humanos , Lesões Encefálicas Traumáticas/terapia , Estimulação Encefálica Profunda/métodos , Estudos de Viabilidade , Qualidade de Vida , Tálamo/fisiologia
5.
Parkinsonism Relat Disord ; 109: 105346, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36966051

RESUMO

INTRODUCTION: Deep brain stimulation (DBS) is an effective treatment for Parkinson's disease (PD), but its efficacy is tied to DBS programming, which is often time consuming and burdensome for patients, caregivers, and clinicians. Our aim is to test whether the Mobile Application for PD DBS (MAP DBS), a clinical decision support system, can improve programming. METHODS: We conducted an open-label, 1:1 randomized, controlled, multicenter clinical trial comparing six months of SOC standard of care (SOC) to six months of MAP DBS-aided programming. We enrolled patients between 30 and 80 years old who received DBS to treat idiopathic PD at six expert centers across the United States. The primary outcome was time spent DBS programming and secondary outcomes measured changes in motor symptoms, caregiver strain and medication requirements. RESULTS: We found a significant reduction in initial visit time (SOC: 43.8 ± 28.9 min n = 37, MAP DBS: 27.4 ± 13.0 min n = 35, p = 0.001). We did not find a significant difference in total programming time between the groups over the 6-month study duration. MAP DBS-aided patients experienced a significantly larger reduction in UPDRS III on-medication scores (-7.0 ± 7.9) compared to SOC (-2.7 ± 6.9, p = 0.01) at six months. CONCLUSION: MAP DBS was well tolerated and improves key aspects of DBS programming time and clinical efficacy.


Assuntos
Estimulação Encefálica Profunda , Aplicativos Móveis , Doença de Parkinson , Núcleo Subtalâmico , Humanos , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Doença de Parkinson/complicações , Resultado do Tratamento
7.
Lancet Neurol ; 22(2): 147-158, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36354027

RESUMO

Tourette syndrome is a chronic neurodevelopmental disorder characterised by motor and phonic tics that can substantially diminish the quality of life of affected individuals. Evaluating and treating Tourette syndrome is complex, in part due to the heterogeneity of symptoms and comorbidities between individuals. The underlying pathophysiology of Tourette syndrome is not fully understood, but recent research in the past 5 years has brought new insights into the genetic variations and the alterations in neurophysiology and brain networks contributing to its pathogenesis. Treatment options for Tourette syndrome are expanding with novel pharmacological therapies and increased use of deep brain stimulation for patients with symptoms that are refractory to pharmacological or behavioural treatments. Potential predictors of patient responses to therapies for Tourette syndrome, such as specific networks modulated during deep brain stimulation, can guide clinical decisions. Multicentre data sharing initiatives have enabled several advances in our understanding of the genetics and pathophysiology of Tourette syndrome and will be crucial for future large-scale research and in refining effective treatments.


Assuntos
Tiques , Síndrome de Tourette , Humanos , Síndrome de Tourette/diagnóstico , Síndrome de Tourette/genética , Síndrome de Tourette/terapia , Qualidade de Vida , Tiques/diagnóstico , Resultado do Tratamento , Encéfalo/patologia
8.
Epilepsia ; 63(8): 2037-2055, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35560062

RESUMO

OBJECTIVE: Responsive neurostimulation is an effective therapy for patients with refractory mesial temporal lobe epilepsy. However, clinical outcomes are variable, few patients become seizure-free, and the optimal stimulation location is currently undefined. The aim of this study was to quantify responsive neurostimulation in the mesial temporal lobe, identify stimulation-dependent networks associated with seizure reduction, and determine if stimulation location or stimulation-dependent networks inform outcomes. METHODS: We modeled patient-specific volumes of tissue activated and created probabilistic stimulation maps of local regions of stimulation across a retrospective cohort of 22 patients with mesial temporal lobe epilepsy. We then mapped the network stimulation effects by seeding tractography from the volume of tissue activated with both patient-specific and normative diffusion-weighted imaging. We identified networks associated with seizure reduction across patients using the patient-specific tractography maps and then predicted seizure reduction across the cohort. RESULTS: Patient-specific stimulation-dependent connectivity was correlated with responsive neurostimulation effectiveness after cross-validation (p = .03); however, normative connectivity derived from healthy subjects was not (p = .44). Increased connectivity from the volume of tissue activated to the medial prefrontal cortex, cingulate cortex, and precuneus was associated with greater seizure reduction. SIGNIFICANCE: Overall, our results suggest that the therapeutic effect of responsive neurostimulation may be mediated by specific networks connected to the volume of tissue activated. In addition, patient-specific tractography was required to identify structural networks correlated with outcomes. It is therefore likely that altered connectivity in patients with epilepsy may be associated with the therapeutic effect and that utilizing patient-specific imaging could be important for future studies. The structural networks identified here may be utilized to target stimulation in the mesial temporal lobe and to improve seizure reduction for patients treated with responsive neurostimulation.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Epilepsia/terapia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/terapia , Giro do Cíngulo , Humanos , Imageamento por Ressonância Magnética , Estudos Retrospectivos , Lobo Temporal
9.
Front Hum Neurosci ; 16: 813387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35308605

RESUMO

DBS Think Tank IX was held on August 25-27, 2021 in Orlando FL with US based participants largely in person and overseas participants joining by video conferencing technology. The DBS Think Tank was founded in 2012 and provides an open platform where clinicians, engineers and researchers (from industry and academia) can freely discuss current and emerging deep brain stimulation (DBS) technologies as well as the logistical and ethical issues facing the field. The consensus among the DBS Think Tank IX speakers was that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. After collectively sharing our experiences, it was estimated that globally more than 230,000 DBS devices have been implanted for neurological and neuropsychiatric disorders. As such, this year's meeting was focused on advances in the following areas: neuromodulation in Europe, Asia and Australia; cutting-edge technologies, neuroethics, interventional psychiatry, adaptive DBS, neuromodulation for pain, network neuromodulation for epilepsy and neuromodulation for traumatic brain injury.

10.
Front Neurol ; 13: 825178, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35356461

RESUMO

Deep brain stimulation (DBS) has advanced treatment options for a variety of neurologic and neuropsychiatric conditions. As the technology for DBS continues to progress, treatment efficacy will continue to improve and disease indications will expand. Hardware advances such as longer-lasting batteries will reduce the frequency of battery replacement and segmented leads will facilitate improvements in the effectiveness of stimulation and have the potential to minimize stimulation side effects. Targeting advances such as specialized imaging sequences and "connectomics" will facilitate improved accuracy for lead positioning and trajectory planning. Software advances such as closed-loop stimulation and remote programming will enable DBS to be a more personalized and accessible technology. The future of DBS continues to be promising and holds the potential to further improve quality of life. In this review we will address the past, present and future of DBS.

11.
Neuromodulation ; 25(2): 276-285, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35125147

RESUMO

OBJECTIVES: The spinal cord injury (SCI) patient population is overwhelmingly affected by neuropathic pain (NP), a secondary condition for which therapeutic options are limited and have a low degree of efficacy. The objective of this study was to identify novel deep brain stimulation (DBS) targets that may theoretically benefit those with NP in the SCI patient population. We hypothesize that localized changes in white matter identified in SCI subjects with NP compared to those without NP could be used to develop an evidence-based approach to DBS target identification. MATERIALS AND METHODS: To classify localized neurostructural changes associated with NP in the SCI population, we compared white matter fiber density (FD) and cross section (FC) between SCI subjects with NP (n = 17) and SCI subjects without NP (n = 15) using diffusion-weighted magnetic resonance imaging (MRI). We then identified theoretical target locations for DBS using fiber bundles connected to significantly altered regions of white matter. Finally, we used computational models of DBS to determine if our theoretical target locations could be used to feasibly activate our fiber bundles of interest. RESULTS: We identified significant increases in FC in the splenium of the corpus callosum in pain subjects when compared to controls. We then isolated five fiber bundles that were directly connected to the affected region of white matter. Our models were able to predict that our fiber bundles of interest can be feasibly activated with DBS at reasonable stimulation amplitudes and with clinically relevant implantation approaches. CONCLUSIONS: Altogether, we identified neuroarchitectural changes associated with NP in the SCI cohort and implemented a novel evidence-driven target selection approach for DBS to guide future research in neuromodulation treatment of NP after SCI.


Assuntos
Estimulação Encefálica Profunda , Neuralgia , Traumatismos da Medula Espinal , Substância Branca , Estudos de Coortes , Humanos , Neuralgia/diagnóstico por imagem , Neuralgia/etiologia , Neuralgia/terapia , Traumatismos da Medula Espinal/complicações , Traumatismos da Medula Espinal/diagnóstico por imagem , Traumatismos da Medula Espinal/terapia , Substância Branca/diagnóstico por imagem
13.
Front Neurosci ; 15: 691701, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408621

RESUMO

Direct electrocortical stimulation (DECS) with electrocorticography electrodes is an established therapy for epilepsy and an emerging application for stroke rehabilitation and brain-computer interfaces. However, the electrophysiological mechanisms that result in a therapeutic effect remain unclear. Patient-specific computational models are promising tools to predict the voltages in the brain and better understand the neural and clinical response to DECS, but the accuracy of such models has not been directly validated in humans. A key hurdle to modeling DECS is accurately locating the electrodes on the cortical surface due to brain shift after electrode implantation. Despite the inherent uncertainty introduced by brain shift, the effects of electrode localization parameters have not been investigated. The goal of this study was to validate patient-specific computational models of DECS against in vivo voltage recordings obtained during DECS and quantify the effects of electrode localization parameters on simulated voltages on the cortical surface. We measured intracranial voltages in six epilepsy patients during DECS and investigated the following electrode localization parameters: principal axis, Hermes, and Dykstra electrode projection methods combined with 0, 1, and 2 mm of cerebral spinal fluid (CSF) below the electrodes. Greater CSF depth between the electrode and cortical surface increased model errors and decreased predicted voltage accuracy. The electrode localization parameters that best estimated the recorded voltages across six patients with varying amounts of brain shift were the Hermes projection method and a CSF depth of 0 mm (r = 0.92 and linear regression slope = 1.21). These results are the first to quantify the effects of electrode localization parameters with in vivo intracranial recordings and may serve as the basis for future studies investigating the neuronal and clinical effects of DECS for epilepsy, stroke, and other emerging closed-loop applications.

14.
Front Neurol ; 12: 613630, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34177753

RESUMO

Neuropathic pain (NP) is a devastating chronic pain condition affecting roughly 80% of the spinal cord injury (SCI) patient population. Current treatment options are largely ineffective and neurophysiological mechanisms of NP are not well-understood. Recent studies in neuroimaging have suggested that NP patients have differential patterns of functional activity that are dependent upon the neurological condition causing NP. We conducted an exploratory pilot study to examine functional activation and connectivity in SCI patients with chronic NP compared to SCI patients without NP. We developed a novel somatosensory attention task to identify short term fluctuations in neural activity related to NP vs. non-painful somatosensation using functional magnetic resonance imaging (fMRI). We also collected high-resolution resting state fMRI to identify connectivity-based correlations over time between the two groups. We observed increased activation during focus on NP in brain regions associated with somatosensory integration and representational knowledge in pain subjects when compared with controls. Similarly, NP subjects showed increased connectivity at rest in many of the same areas of the brain, with positive correlations between somatomotor networks, the dorsal attention network, and regions associated with pain and specific areas of painful and non-painful sensation within our cohort. Although this pilot analysis did not identify statistically significant differences between groups after correction for multiple comparisons, the observed correlations between NP and functional activation and connectivity align with a priori hypotheses regarding pain, and provide a well-controlled preliminary basis for future research in this severely understudied patient population. Altogether, this study presents a novel task, identifies regions of increased task-based activation associated with NP after SCI in the insula, prefrontal, and medial inferior parietal cortices, and identifies similar regions of increased functional connectivity associated with NP after SCI in sensorimotor, cingulate, prefrontal, and inferior medial parietal cortices. This, along with our complementary results from a structurally based analysis, provide multi-modal evidence for regions of the brain specific to the SCI cohort as novel areas for further study and potential therapeutic targeting to improve outcomes for NP patients.

15.
JAMA Neurol ; 78(8): 972-981, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180949

RESUMO

Importance: The travel required to receive deep brain stimulation (DBS) programming causes substantial burden on patients and limits who can access DBS therapy. Objective: To evaluate the efficacy of home health DBS postoperative management in an effort to reduce travel burden and improve access. Design, Settings, and Participants: This open-label randomized clinical trial was conducted at University of Florida Health from November 2017 to April 2020. Eligible participants had a diagnosis of Parkinson disease (PD) and were scheduled to receive DBS independently of the study. Consenting participants were randomized 1:1 to receive either standard of care or home health postoperative DBS management for 6 months after surgery. Primary caregivers, usually spouses, were also enrolled to assess caregiver strain. Interventions: The home health postoperative management was conducted by a home health nurse who chose DBS settings with the aid of the iPad-based Mobile Application for PD DBS system. Prior to the study, the home health nurse had no experience providing DBS care. Main Outcomes and Measures: The primary outcome was the number of times each patient traveled to the movement disorders clinic during the study period. Secondary outcomes included changes from baseline on the Unified Parkinson's Disease Rating Scale part III. Results: Approximately 75 patients per year were scheduled for DBS. Of the patients who met inclusion criteria over the entire study duration, 45 either declined or were excluded for various reasons. Of the 44 patients enrolled, 19 of 21 randomized patients receiving the standard of care (mean [SD] age, 64.1 [10.0] years; 11 men) and 23 of 23 randomized patients receiving home health who underwent a minimum of 1 postoperative management visit (mean [SD] age, 65.0 [10.9] years; 13 men) were included in analysis. The primary outcome revealed that patients randomized to home health had significantly fewer clinic visits than the patients in the standard of care arm (mean [SD], 0.4 [0.8] visits vs 4.8 [0.4] visits; P < .001). We found no significant differences between the groups in the secondary outcomes measuring the efficacy of DBS. No adverse events occurred in association with the study procedure or devices. Conclusions and Relevance: This study provides evidence supporting the safety and feasibility of postoperative home health DBS management. Trial Registration: ClinicalTrials.gov Identifier: NCT02474459.


Assuntos
Estimulação Encefálica Profunda/métodos , Serviços de Assistência Domiciliar , Doença de Parkinson/terapia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cuidadores , Efeitos Psicossociais da Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Cuidados Pós-Operatórios , Resultado do Tratamento
16.
Front Hum Neurosci ; 15: 644593, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33953663

RESUMO

We estimate that 208,000 deep brain stimulation (DBS) devices have been implanted to address neurological and neuropsychiatric disorders worldwide. DBS Think Tank presenters pooled data and determined that DBS expanded in its scope and has been applied to multiple brain disorders in an effort to modulate neural circuitry. The DBS Think Tank was founded in 2012 providing a space where clinicians, engineers, researchers from industry and academia discuss current and emerging DBS technologies and logistical and ethical issues facing the field. The emphasis is on cutting edge research and collaboration aimed to advance the DBS field. The Eighth Annual DBS Think Tank was held virtually on September 1 and 2, 2020 (Zoom Video Communications) due to restrictions related to the COVID-19 pandemic. The meeting focused on advances in: (1) optogenetics as a tool for comprehending neurobiology of diseases and on optogenetically-inspired DBS, (2) cutting edge of emerging DBS technologies, (3) ethical issues affecting DBS research and access to care, (4) neuromodulatory approaches for depression, (5) advancing novel hardware, software and imaging methodologies, (6) use of neurophysiological signals in adaptive neurostimulation, and (7) use of more advanced technologies to improve DBS clinical outcomes. There were 178 attendees who participated in a DBS Think Tank survey, which revealed the expansion of DBS into several indications such as obesity, post-traumatic stress disorder, addiction and Alzheimer's disease. This proceedings summarizes the advances discussed at the Eighth Annual DBS Think Tank.

17.
Artigo em Inglês | MEDLINE | ID: mdl-33536144

RESUMO

BACKGROUND: Deep brain stimulation (DBS) targeting the globus pallidus internus (GPi) can improve tics and comorbid obsessive-compulsive behavior (OCB) in patients with treatment-refractory Tourette syndrome (TS). However, some patients' symptoms remain unresponsive, the stimulation applied across patients is variable, and the mechanisms underlying improvement are unclear. Identifying the fiber pathways surrounding the GPi that are associated with improvement could provide mechanistic insight and refine targeting strategies to improve outcomes. METHODS: Retrospective data were collected for 35 patients who underwent bilateral GPi DBS for TS. Computational models of fiber tract activation were constructed using patient-specific lead locations and stimulation settings to evaluate the effects of DBS on basal ganglia pathways and the internal capsule. We first evaluated the relationship between activation of individual pathways and symptom improvement. Next, linear mixed-effects models with combinations of pathways and clinical variables were compared in order to identify the best-fit predictive models of tic and OCB improvement. RESULTS: The best-fit model of tic improvement included baseline severity and the associative pallido-subthalamic pathway. The best-fit model of OCB improvement included baseline severity and the sensorimotor pallido-subthalamic pathway, with substantial evidence also supporting the involvement of the prefrontal, motor, and premotor internal capsule pathways. The best-fit models of tic and OCB improvement predicted outcomes across the cohort and in cross-validation. CONCLUSIONS: Differences in fiber pathway activation likely contribute to variable outcomes of DBS for TS. Computational models of pathway activation could be used to develop novel approaches for preoperative targeting and selecting stimulation parameters to improve patient outcomes.


Assuntos
Estimulação Encefálica Profunda , Síndrome de Tourette , Globo Pálido , Humanos , Estudos Retrospectivos , Síndrome de Tourette/terapia , Resultado do Tratamento
18.
Front Neuroinform ; 14: 36, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33071769

RESUMO

BACKGROUND: Neuromodulation therapies, such as deep brain stimulation (DBS), spinal cord stimulation (SCS), responsive neurostimulation (RNS), transcranial magnetic stimulation (TMS), transcranial direct stimulation (tDCS), and vagus nerve stimulation (VNS) are used to treat neurological and psychiatric conditions for patients who have failed to benefit from other treatment approaches. Although generally effective, seemingly similar cases often have very different levels of effectiveness. While there is ongoing interest in developing predictors, it can be difficult to aggregate the necessary data from limited cohorts of patients at individual treatment centers. OBJECTIVE: In order to increase the predictive power in neuromodulation studies, we created an informatics platform called the International Neuromodulation Registry (INR). The INR platform has a data flow process that will allow researchers to pool data across multiple centers to enable population health research. METHODS: This custom informatics platform has a Neo4j graph database and includes a harmonization process that allows data from different studies to be aggregated and compared. Users of the INR can download deidentified patient imaging, patient demographic data, device settings, and medical rating scales. The INR supports complex network analysis and patient timeline visualization. RESULTS: The INR currently houses and allows visualization of deidentified imaging and clinical data from hundreds of patients with a wide range of diagnoses and neuromodulation therapies. CONCLUSION: Ultimately, we believe that widespread adoption of the INR platform will improve population health research in neuromodulation therapy.

19.
Brain ; 143(8): 2607-2623, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32653920

RESUMO

Deep brain stimulation may be an effective therapy for select cases of severe, treatment-refractory Tourette syndrome; however, patient responses are variable, and there are no reliable methods to predict clinical outcomes. The objectives of this retrospective study were to identify the stimulation-dependent structural networks associated with improvements in tics and comorbid obsessive-compulsive behaviour, compare the networks across surgical targets, and determine if connectivity could be used to predict clinical outcomes. Volumes of tissue activated for a large multisite cohort of patients (n = 66) implanted bilaterally in globus pallidus internus (n = 34) or centromedial thalamus (n = 32) were used to generate probabilistic tractography to form a normative structural connectome. The tractography maps were used to identify networks that were correlated with improvement in tics or comorbid obsessive-compulsive behaviour and to predict clinical outcomes across the cohort. The correlated networks were then used to generate 'reverse' tractography to parcellate the total volume of stimulation across all patients to identify local regions to target or avoid. The results showed that for globus pallidus internus, connectivity to limbic networks, associative networks, caudate, thalamus, and cerebellum was positively correlated with improvement in tics; the model predicted clinical improvement scores (P = 0.003) and was robust to cross-validation. Regions near the anteromedial pallidum exhibited higher connectivity to the positively correlated networks than posteroventral pallidum, and volume of tissue activated overlap with this map was significantly correlated with tic improvement (P < 0.017). For centromedial thalamus, connectivity to sensorimotor networks, parietal-temporal-occipital networks, putamen, and cerebellum was positively correlated with tic improvement; the model predicted clinical improvement scores (P = 0.012) and was robust to cross-validation. Regions in the anterior/lateral centromedial thalamus exhibited higher connectivity to the positively correlated networks, but volume of tissue activated overlap with this map did not predict improvement (P > 0.23). For obsessive-compulsive behaviour, both targets showed that connectivity to the prefrontal cortex, orbitofrontal cortex, and cingulate cortex was positively correlated with improvement; however, only the centromedial thalamus maps predicted clinical outcomes across the cohort (P = 0.034), but the model was not robust to cross-validation. Collectively, the results demonstrate that the structural connectivity of the site of stimulation are likely important for mediating symptom improvement, and the networks involved in tic improvement may differ across surgical targets. These networks provide important insight on potential mechanisms and could be used to guide lead placement and stimulation parameter selection, as well as refine targets for neuromodulation therapies for Tourette syndrome.


Assuntos
Encéfalo/fisiopatologia , Estimulação Encefálica Profunda/métodos , Rede Nervosa/fisiopatologia , Síndrome de Tourette/terapia , Adulto , Encéfalo/diagnóstico por imagem , Imagem de Tensor de Difusão , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Estudos Retrospectivos , Síndrome de Tourette/diagnóstico por imagem , Síndrome de Tourette/fisiopatologia , Resultado do Tratamento
20.
Brain Stimul ; 13(5): 1232-1244, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32504827

RESUMO

BACKGROUND: Brain activity is constrained by and evolves over a network of structural and functional connections. Corticocortical evoked potentials (CCEPs) have been used to measure this connectivity and to discern brain areas involved in both brain function and disease. However, how varying stimulation parameters influences the measured CCEP across brain areas has not been well characterized. OBJECTIVE: To better understand the factors that influence the amplitude of the CCEPs as well as evoked gamma-band power (70-150 Hz) resulting from single-pulse stimulation via cortical surface and depth electrodes. METHODS: CCEPs from 4370 stimulation-response channel pairs were recorded across a range of stimulation parameters and brain regions in 11 patients undergoing long-term monitoring for epilepsy. A generalized mixed-effects model was used to model cortical response amplitudes from 5 to 100 ms post-stimulation. RESULTS: Stimulation levels <5.5 mA generated variable CCEPs with low amplitude and reduced spatial spread. Stimulation at ≥5.5 mA yielded a reliable and maximal CCEP across stimulation-response pairs over all regions. These findings were similar when examining the evoked gamma-band power. The amplitude of both measures was inversely correlated with distance. CCEPs and evoked gamma power were largest when measured in the hippocampus compared with other areas. Larger CCEP size and evoked gamma power were measured within the seizure onset zone compared with outside this zone. CONCLUSION: These results will help guide future stimulation protocols directed at quantifying network connectivity across cognitive and disease states.


Assuntos
Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/fisiopatologia , Eletrodos Implantados , Ritmo Gama/fisiologia , Adulto , Mapeamento Encefálico/métodos , Estimulação Encefálica Profunda/instrumentação , Epilepsia Resistente a Medicamentos/terapia , Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Distribuição Aleatória , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...