Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(26): 31740-31754, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37345663

RESUMO

Global warming is an ever-rising environmental concern, and carbon dioxide (CO2) is among its major causes. Different technologies, including adsorption, cryogenic separation, and sequestration, have been developed for CO2 separation and storage/utilization. Among these, carbon capture using nano-adsorbents has the advantages of excellent CO2 separation and storage performance as well as superior heat- and mass-transfer characteristics due to their large surface area and pore volume. In this work, an environmentally friendly, facile, bottom-up synthesis of ZIF-8 hollow nanospheres (with reduced chemical consumption) was developed for selective CO2 separation and storage. During this soft-templating synthesis, a combined effect of ultra-sonication and low-temperature hydrothermal synthesis showed better control over an oil-in-water microemulsion formation and the subsequent growth of large-surface-area hollow ZIF-8 nanospheres having excellent particle size distribution. Systematic studies on the synthesis parameters were also performed to achieve fine-tuning of the ZIF-8 crystallinity, hollow structures, and sphere size. The optimized hollow ZIF-8 nanosphere sample having uniform size distribution exhibited remarkable CO2 adsorption capability (∼2.24 mmol g-1 at 0 °C and 1.75 bar), a CO2/N2 separation selectivity of 12.15, a good CO2 storage capacity (1.5-1.75 wt %), and an excellent cyclic adsorption/desorption performance (up to four CO2 adsorption/desorption cycles) at 25 °C. In addition, the samples showed exceptional structural stability with only ∼15% of overall weight loss up to 600 °C under a nitrogen environment. Therefore, the hollow ZIF-8 nanospheres as well as their highly controlled soft-templating synthesis method reported in this work are useful in the course of the development of nanomaterials with optimized properties for future CO2 capture technologies.

2.
Membranes (Basel) ; 12(5)2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35629825

RESUMO

Integrated metal-organic frameworks (MOFs) with graphene oxide (GO) have aroused huge interest in recent years due to their unique properties and excellent performance compared to MOFs or GO alone. While a lot of attention has been focused on the synthesis methodologies and the performance analysis of the composite materials in recent years, the fundamental formation/crystallization mechanism(s) is (are) still not fully understood. Ascribed to the distinctive structural and functional properties of GO, the nucleation and crystallization process of MOFs could be altered/promoted, forming MOF/GO composite materials with different nanostructures. Furthermore, the MOF's parental structure could also influence how the GO and MOF bond together. Thus, this short review attempted to provide critical and indepth discussions of recent research results with a particular focus on the factors that influence the directional growth of parent MOFs in the presence of graphene oxide. Due to the unique structure and enhanced properties, the derived MOF/GO composites have a wide range of applications including gas separation, electrochemistry, and photocatalysis. We hope this review will be of interest to researchers working on MOF design, crystal structure control (e.g., orientation), and composite materials development.

3.
Membranes (Basel) ; 12(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35448344

RESUMO

The exponential rise in lithium demand over the last decade, as one of the largest sources for energy storage in terms of lithium-ion batteries (LIBs), has posed a great threat to the existing lithium supply and demand balance. The current methodologies available for lithium extraction, separation and recovery, both from primary (brines/seawater) and secondary (LIBs) sources, suffer not only at the hands of excessive use of chemicals but complicated, time-consuming and environmentally detrimental design procedures. Researchers across the world are working to review and update the available technologies for lithium harvesting in terms of their economic and feasibility analysis. Following its excessive consumption of sustainable energy resources, its demand has risen sharply and therefore requires urgent attention. In this paper, different available methodologies for lithium extraction and recycling from the most abundant primary and secondary lithium resources have been reviewed and compared. This review also includes the prospects of using membrane technology as a promising replacement for conventional methods.

4.
Nanoscale ; 13(35): 14644-14655, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34558583

RESUMO

A novel continuous fluid circulation system was designed and employed for the impregnation seeding and fabrication of zeolitic imidazolate framework (ZIF) crystals on the internal surface of polymeric hollow fibre membranes. Application of impregnation seeding has been proven effective to decrease crystal size, consequently increasing surface roughness and wettability of the membrane. Evaluation of the as-synthesised membrane demonstrated excellent separation efficiencies (>99%) of surfactant stabilised oil-in-water emulsions. Owing to the simple impregnation strategy assisted by the continuous fluid circulation, the active ZIF layer formed was visibly thinner and denser than typical seeding techniques, hence a high pure water flux of >1150 L m-2 h-1 bar-1 was achieved. The membranes were highly selective and ultra-permeable to water, however, almost impermeable to oils in a water environment, e.g., n-hexane, n-heptane, chloroform and dichloromethane, as well as their emulsion mixtures, with a separation efficiency higher than 99%. Besides, this new continuous fluid circulation method was also found promising for the synthesis of other types of ZIF on hollow fibre membranes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...