Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-37905055

RESUMO

Collagenopathies are a group of clinically diverse disorders caused by defects in collagen folding and secretion. For example, mutations in the gene encoding collagen type-II, the primary collagen in cartilage, can lead to diverse chondrodysplasias. One example is the Gly1170Ser substitution in procollagen-II, which causes precocious osteoarthritis. Here, we biochemically and mechanistically characterize an induced pluripotent stem cell-based cartilage model of this disease, including both hetero- and homozygous genotypes. We show that Gly1170Ser procollagen-II is notably slow to fold and secrete. Instead, procollagen-II accumulates intracellularly, consistent with an endoplasmic reticulum (ER) storage disorder. Owing to unique features of the collagen triple helix, this accumulation is not recognized by the unfolded protein response. Gly1170Ser procollagen-II interacts to a greater extent than wild-type with specific proteostasis network components, consistent with its slow folding. These findings provide mechanistic elucidation into the etiology of this disease. Moreover, the cartilage model will enable rapid testing of therapeutic strategies to restore proteostasis in the collagenopathies.

2.
Sci Adv ; 9(32): eadg9781, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37566656

RESUMO

Vascularization is driven by morphogen signals and mechanical cues that coordinately regulate cellular force generation, migration, and shape change to sculpt the developing vascular network. However, it remains unclear whether developing vasculature actively regulates its own mechanical properties to achieve effective vascularization. We engineered tissue constructs containing endothelial cells and fibroblasts to investigate the mechanics of vascularization. Tissue stiffness increases during vascular morphogenesis resulting from emergent interactions between endothelial cells, fibroblasts, and ECM and correlates with enhanced vascular function. Contractile cellular forces are key to emergent tissue stiffening and synergize with ECM mechanical properties to modulate the mechanics of vascularization. Emergent tissue stiffening and vascular function rely on mechanotransduction signaling within fibroblasts, mediated by YAP1. Mouse embryos lacking YAP1 in fibroblasts exhibit both reduced tissue stiffness and develop lethal vascular defects. Translating our findings through biology-inspired vascular tissue engineering approaches will have substantial implications in regenerative medicine.


Assuntos
Células Endoteliais , Mecanotransdução Celular , Camundongos , Animais , Mecanotransdução Celular/fisiologia , Engenharia Tecidual/métodos , Morfogênese , Diferenciação Celular , Matriz Extracelular
3.
Nucleic Acids Res ; 51(6): e31, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36715334

RESUMO

Targeted mutagenesis mediated by nucleotide base deaminase-T7 RNA polymerase fusions has recently emerged as a novel and broadly useful strategy to power genetic diversification in the context of in vivo directed evolution campaigns. Here, we expand the utility of this approach by introducing a highly active adenosine deaminase-T7 RNA polymerase fusion protein (eMutaT7A→G), resulting in higher mutation frequencies to enable more rapid directed evolution. We also assess the benefits and potential downsides of using this more active mutator. We go on to show in Escherichia coli that adenosine deaminase-bearing mutators (MutaT7A→G or eMutaT7A→G) can be employed in tandem with a cytidine deaminase-bearing mutator (MutaT7C→T) to introduce all possible transition mutations simultaneously. We illustrate the efficacy of this in vivo mutagenesis approach by exploring mutational routes to antibacterial drug resistance. This work sets the stage for general application of optimized MutaT7 tools able to induce all types of transition mutations during in vivo directed evolution campaigns across diverse organisms.


Assuntos
Mutagênese , Adenosina Desaminase/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Mutação , Técnicas Genéticas
4.
Cell Host Microbe ; 30(7): 1048-1060.e5, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35443155

RESUMO

Malaria-causing Plasmodium vivax parasites can linger in the human liver for weeks to years and reactivate to cause recurrent blood-stage infection. Although they are an important target for malaria eradication, little is known about the molecular features of replicative and non-replicative intracellular liver-stage parasites and their host cell dependence. Here, we leverage a bioengineered human microliver platform to culture patient-derived P. vivax parasites for transcriptional profiling. Coupling enrichment strategies with bulk and single-cell analyses, we capture both parasite and host transcripts in individual hepatocytes throughout the course of infection. We define host- and state-dependent transcriptional signatures and identify unappreciated populations of replicative and non-replicative parasites that share features with sexual transmissive forms. We find that infection suppresses the transcription of key hepatocyte function genes and elicits an anti-parasite innate immune response. Our work provides a foundation for understanding host-parasite interactions and reveals insights into the biology of P. vivax dormancy and transmission.


Assuntos
Malária Vivax , Malária , Hepatócitos/parasitologia , Humanos , Fígado/parasitologia , Malária/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/genética
5.
PLoS Biol ; 20(2): e3001569, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180219

RESUMO

The sequence space accessible to evolving proteins can be enhanced by cellular chaperones that assist biophysically defective clients in navigating complex folding landscapes. It is also possible, at least in theory, for proteostasis mechanisms that promote strict quality control to greatly constrain accessible protein sequence space. Unfortunately, most efforts to understand how proteostasis mechanisms influence evolution rely on artificial inhibition or genetic knockdown of specific chaperones. The few experiments that perturb quality control pathways also generally modulate the levels of only individual quality control factors. Here, we use chemical genetic strategies to tune proteostasis networks via natural stress response pathways that regulate the levels of entire suites of chaperones and quality control mechanisms. Specifically, we upregulate the unfolded protein response (UPR) to test the hypothesis that the host endoplasmic reticulum (ER) proteostasis network shapes the sequence space accessible to human immunodeficiency virus-1 (HIV-1) envelope (Env) protein. Elucidating factors that enhance or constrain Env sequence space is critical because Env evolves extremely rapidly, yielding HIV strains with antibody- and drug-escape mutations. We find that UPR-mediated upregulation of ER proteostasis factors, particularly those controlled by the IRE1-XBP1s UPR arm, globally reduces Env mutational tolerance. Conserved, functionally important Env regions exhibit the largest decreases in mutational tolerance upon XBP1s induction. Our data indicate that this phenomenon likely reflects strict quality control endowed by XBP1s-mediated remodeling of the ER proteostasis environment. Intriguingly, and in contrast, specific regions of Env, including regions targeted by broadly neutralizing antibodies, display enhanced mutational tolerance when XBP1s is induced, hinting at a role for host proteostasis network hijacking in potentiating antibody escape. These observations reveal a key function for proteostasis networks in decreasing instead of expanding the sequence space accessible to client proteins, while also demonstrating that the host ER proteostasis network profoundly shapes the mutational tolerance of Env in ways that could have important consequences for HIV adaptation.


Assuntos
Infecções por HIV , Proteostase , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático/genética , Infecções por HIV/metabolismo , Humanos , Chaperonas Moleculares/metabolismo , Resposta a Proteínas não Dobradas
6.
J Biomol Tech ; 31(4): 151-156, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33100919

RESUMO

Advances in next-generation sequencing technologies have allowed RNA sequencing to become an increasingly time efficient, cost-effective, and accessible tool for genomic research. We present here an automated and miniaturized workflow for RNA library preparation that minimizes reagent usage and processing time required per sample to generate Illumina compatible libraries for sequencing. The reduced-volume libraries show similar behavior to full-scale libraries with comparable numbers of genes detected and reproducible clustering of samples.


Assuntos
Automação/métodos , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA-Seq/métodos , Genômica , RNA/isolamento & purificação , Reprodutibilidade dos Testes , Fluxo de Trabalho
7.
ACS Infect Dis ; 6(7): 1659-1666, 2020 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-32502335

RESUMO

Host protein folding stress responses can play important roles in RNA virus replication and evolution. Prior work suggested a complicated interplay between the cytosolic proteostasis stress response, controlled by the transcriptional master regulator heat shock factor 1 (HSF1), and human immunodeficiency virus-1 (HIV-1). We sought to uncouple HSF1 transcription factor activity from cytotoxic proteostasis stress and thereby better elucidate the proposed role(s) of HSF1 in the HIV-1 lifecycle. To achieve this objective, we used chemical genetic, stress-independent control of HSF1 activity to establish whether and how HSF1 influences HIV-1 replication. Stress-independent HSF1 induction decreased both the total quantity and infectivity of HIV-1 virions. Moreover, HIV-1 was unable to escape HSF1-mediated restriction over the course of several serial passages. These results clarify the interplay between the host's heat shock response and HIV-1 infection and motivate continued investigation of chaperones as potential antiviral therapeutic targets.


Assuntos
Resposta ao Choque Térmico , Proteostase , Fatores de Transcrição de Choque Térmico/genética , Fatores de Transcrição de Choque Térmico/metabolismo , Humanos , Chaperonas Moleculares , Replicação Viral
8.
Nat Neurosci ; 22(10): 1696-1708, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31551601

RESUMO

The mammalian brain is complex, with multiple cell types performing a variety of diverse functions, but exactly how each cell type is affected in aging remains largely unknown. Here we performed a single-cell transcriptomic analysis of young and old mouse brains. We provide comprehensive datasets of aging-related genes, pathways and ligand-receptor interactions in nearly all brain cell types. Our analysis identified gene signatures that vary in a coordinated manner across cell types and gene sets that are regulated in a cell-type specific manner, even at times in opposite directions. These data reveal that aging, rather than inducing a universal program, drives a distinct transcriptional course in each cell population, and they highlight key molecular processes, including ribosome biogenesis, underlying brain aging. Overall, these large-scale datasets (accessible online at https://portals.broadinstitute.org/single_cell/study/aging-mouse-brain ) provide a resource for the neuroscience community that will facilitate additional discoveries directed towards understanding and modifying the aging process.


Assuntos
Envelhecimento/genética , Encéfalo/crescimento & desenvolvimento , Neurônios/fisiologia , Análise de Célula Única , Transcriptoma/genética , Animais , Encéfalo/citologia , Comunicação Celular/genética , Linhagem da Célula/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/genética , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ribossomos/genética
9.
Development ; 146(19)2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31427288

RESUMO

Deciphering the genetic and epigenetic regulation of cardiomyocyte proliferation in organisms that are capable of robust cardiac renewal, such as zebrafish, represents an attractive inroad towards regenerating the human heart. Using integrated high-throughput transcriptional and chromatin analyses, we have identified a strong association between H3K27me3 deposition and reduced sarcomere and cytoskeletal gene expression in proliferative cardiomyocytes following cardiac injury in zebrafish. To move beyond an association, we generated an inducible transgenic strain expressing a mutant version of histone 3, H3.3K27M, that inhibits H3K27me3 catalysis in cardiomyocytes during the regenerative window. Hearts comprising H3.3K27M-expressing cardiomyocytes fail to regenerate, with wound edge cells showing heightened expression of structural genes and prominent sarcomeres. Although cell cycle re-entry was unperturbed, cytokinesis and wound invasion were significantly compromised. Collectively, our study identifies H3K27me3-mediated silencing of structural genes as requisite for zebrafish heart regeneration and suggests that repression of similar structural components in the border zone of an infarcted human heart might improve its regenerative capacity.


Assuntos
Inativação Gênica , Coração/fisiologia , Histonas/metabolismo , Lisina/metabolismo , Regeneração/fisiologia , Peixe-Zebra/genética , Peixe-Zebra/fisiologia , Animais , Proliferação de Células , Citocinese , Citoesqueleto/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Metilação , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Sarcômeros/metabolismo
10.
Cell ; 178(5): 1115-1131.e15, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31442404

RESUMO

Little is known about how metabolites couple tissue-specific stem cell function with physiology. Here we show that, in the mammalian small intestine, the expression of Hmgcs2 (3-hydroxy-3-methylglutaryl-CoA synthetase 2), the gene encoding the rate-limiting enzyme in the production of ketone bodies, including beta-hydroxybutyrate (ßOHB), distinguishes self-renewing Lgr5+ stem cells (ISCs) from differentiated cell types. Hmgcs2 loss depletes ßOHB levels in Lgr5+ ISCs and skews their differentiation toward secretory cell fates, which can be rescued by exogenous ßOHB and class I histone deacetylase (HDAC) inhibitor treatment. Mechanistically, ßOHB acts by inhibiting HDACs to reinforce Notch signaling, instructing ISC self-renewal and lineage decisions. Notably, although a high-fat ketogenic diet elevates ISC function and post-injury regeneration through ßOHB-mediated Notch signaling, a glucose-supplemented diet has the opposite effects. These findings reveal how control of ßOHB-activated signaling in ISCs by diet helps to fine-tune stem cell adaptation in homeostasis and injury.


Assuntos
Dieta Hiperlipídica , Corpos Cetônicos/metabolismo , Células-Tronco/metabolismo , Ácido 3-Hidroxibutírico/sangue , Ácido 3-Hidroxibutírico/farmacologia , Idoso de 80 Anos ou mais , Animais , Diferenciação Celular/efeitos dos fármacos , Autorrenovação Celular , Feminino , Inibidores de Histona Desacetilases/farmacologia , Humanos , Hidroximetilglutaril-CoA Sintase/deficiência , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Intestinos/citologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Knockout , Receptores Acoplados a Proteínas G/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células-Tronco/citologia , Adulto Jovem
11.
Elife ; 82019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31033440

RESUMO

Iron and heme play central roles in the production of red blood cells, but the underlying mechanisms remain incompletely understood. Heme-regulated eIF2α kinase (HRI) controls translation by phosphorylating eIF2α. Here, we investigate the global impact of iron, heme, and HRI on protein translation in vivo in murine primary erythroblasts using ribosome profiling. We validate the known role of HRI-mediated translational stimulation of integratedstressresponse mRNAs during iron deficiency in vivo. Moreover, we find that the translation of mRNAs encoding cytosolic and mitochondrial ribosomal proteins is substantially repressed by HRI during iron deficiency, causing a decrease in cytosolic and mitochondrial protein synthesis. The absence of HRI during iron deficiency elicits a prominent cytoplasmic unfolded protein response and impairs mitochondrial respiration. Importantly, ATF4 target genes are activated during iron deficiency to maintain mitochondrial function and to enable erythroid differentiation. We further identify GRB10 as a previously unappreciated regulator of terminal erythropoiesis.


Assuntos
Eritropoese/fisiologia , Heme/metabolismo , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteostase/fisiologia , eIF-2 Quinase/metabolismo , Fator 4 Ativador da Transcrição/genética , Anemia Ferropriva , Animais , Diferenciação Celular , Eritroblastos , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteína Adaptadora GRB10/genética , Proteína Adaptadora GRB10/metabolismo , Camundongos , Camundongos Knockout , Oxigênio/metabolismo , Fosforilação , Biossíntese de Proteínas , Proteínas Ribossômicas , Resposta a Proteínas não Dobradas , eIF-2 Quinase/genética
12.
Cell Chem Biol ; 26(5): 711-723.e14, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-30880155

RESUMO

The transcription factor Max is a basic-helix-loop-helix leucine zipper (bHLHLZ) protein that forms homodimers or interacts with other bHLHLZ proteins, including Myc and Mxd proteins. Among this dynamic network of interactions, the Myc/Max heterodimer has crucial roles in regulating normal cellular processes, but its transcriptional activity is deregulated in a majority of human cancers. Despite this significance, the arsenal of high-quality chemical probes to interrogate these proteins remains limited. We used small molecule microarrays to identify compounds that bind Max in a mechanistically unbiased manner. We discovered the asymmetric polycyclic lactam, KI-MS2-008, which stabilizes the Max homodimer while reducing Myc protein and Myc-regulated transcript levels. KI-MS2-008 also decreases viable cancer cell growth in a Myc-dependent manner and suppresses tumor growth in vivo. This approach demonstrates the feasibility of modulating Max with small molecules and supports altering Max dimerization as an alternative approach to targeting Myc.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Lactamas/farmacologia , Compostos Policíclicos/farmacologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Repressoras/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Transcrição Gênica/efeitos dos fármacos , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/química , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Linhagem Celular , Dimerização , Modelos Animais de Doenças , Humanos , Lactamas/síntese química , Lactamas/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/tratamento farmacológico , Compostos Policíclicos/síntese química , Compostos Policíclicos/uso terapêutico , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Ratos , Proteínas Repressoras/química , Proteínas Repressoras/genética , Bibliotecas de Moléculas Pequenas/uso terapêutico , Raios Ultravioleta
13.
PLoS Genet ; 15(2): e1007830, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30789901

RESUMO

The nematode Caenorhabditis elegans has emerged as a genetically tractable animal host in which to study evolutionarily conserved mechanisms of innate immune signaling. We previously showed that the PMK-1 p38 mitogen-activated protein kinase (MAPK) pathway regulates innate immunity of C. elegans through phosphorylation of the CREB/ATF bZIP transcription factor, ATF-7. Here, we have undertaken a genomic analysis of the transcriptional response of C. elegans to infection by Pseudomonas aeruginosa, combining genome-wide expression analysis by RNA-seq with ATF-7 chromatin immunoprecipitation followed by sequencing (ChIP-Seq). We observe that PMK-1-ATF-7 activity regulates a majority of all genes induced by pathogen infection, and observe ATF-7 occupancy in regulatory regions of pathogen-induced genes in a PMK-1-dependent manner. Moreover, functional analysis of a subset of these ATF-7-regulated pathogen-induced target genes supports a direct role for this transcriptional response in host defense. The genome-wide regulation through PMK-1- ATF-7 signaling reveals a striking level of control over the innate immune response to infection through a single transcriptional regulator.


Assuntos
Fatores Ativadores da Transcrição/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/imunologia , Caenorhabditis elegans/microbiologia , Pseudomonas aeruginosa/imunologia , Animais , Caenorhabditis elegans/genética , Imunoprecipitação da Cromatina , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Imunidade Inata , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Análise de Sequência de RNA
14.
J Am Chem Soc ; 140(51): 18093-18103, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30427676

RESUMO

The discovery and optimization of biomolecules that reliably function in metazoan cells is imperative for both the study of basic biology and the treatment of disease. We describe the development, characterization, and proof-of-concept application of a platform for directed evolution of diverse biomolecules of interest (BOIs) directly in human cells. The platform relies on a custom-designed adenovirus variant lacking multiple genes, including the essential DNA polymerase and protease genes, features that allow us to evolve BOIs encoded by genes as large as 7 kb while attaining the mutation rates and enforcing the selection pressure required for successful directed evolution. High mutagenesis rates are continuously attained by trans-complementation of a newly engineered, highly error-prone form of the adenoviral polymerase. Selection pressure that couples desired BOI functions to adenoviral propagation is achieved by linking the functionality of the encoded BOI to the production of adenoviral protease activity by the human cell. The dynamic range for directed evolution can be enhanced to several orders of magnitude via application of a small-molecule adenoviral protease inhibitor to modulate selection pressure during directed evolution experiments. This platform makes it possible, in principle, to evolve any biomolecule activity that can be coupled to adenoviral protease expression or activation by simply serially passaging adenoviral populations carrying the BOI. As proof-of-concept, we use the platform to evolve, directly in the human cell environment, several transcription factor variants that maintain high levels of function while gaining resistance to a small-molecule inhibitor. We anticipate that this platform will substantially expand the repertoire of biomolecules that can be reliably and robustly engineered for both research and therapeutic applications in metazoan systems.


Assuntos
Evolução Molecular Direcionada/métodos , Fatores de Transcrição/metabolismo , Adenoviridae/genética , Fagos Bacilares/enzimologia , DNA Polimerase Dirigida por DNA/genética , Doxorrubicina/farmacologia , Resistência a Medicamentos/genética , Células HEK293 , Humanos , Integrases/genética , Leucina-tRNA Ligase/genética , Mutagênese , Peptídeo Hidrolases/genética , Estudo de Prova de Conceito , Engenharia de Proteínas , Fatores de Transcrição/genética , Proteínas Virais/genética
15.
PLoS Biol ; 16(9): e3000008, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30222731

RESUMO

The threat of viral pandemics demands a comprehensive understanding of evolution at the host-pathogen interface. Here, we show that the accessibility of adaptive mutations in influenza nucleoprotein at fever-like temperatures is mediated by host chaperones. Particularly noteworthy, we observe that the Pro283 nucleoprotein variant, which (1) is conserved across human influenza strains, (2) confers resistance to the Myxovirus resistance protein A (MxA) restriction factor, and (3) critically contributed to adaptation to humans in the 1918 pandemic influenza strain, is rendered unfit by heat shock factor 1 inhibition-mediated host chaperone depletion at febrile temperatures. This fitness loss is due to biophysical defects that chaperones are unavailable to address when heat shock factor 1 is inhibited. Thus, influenza subverts host chaperones to uncouple the biophysically deleterious consequences of viral protein variants from the benefits of immune escape. In summary, host proteostasis plays a central role in shaping influenza adaptation, with implications for the evolution of other viruses, for viral host switching, and for antiviral drug development.


Assuntos
Adaptação Fisiológica , Interações Hospedeiro-Patógeno , Evasão da Resposta Imune , Sistema Imunitário/virologia , Imunidade Inata , Chaperonas Moleculares/metabolismo , Orthomyxoviridae/imunologia , Sequência de Aminoácidos , Animais , Fenômenos Biofísicos , Análise Mutacional de DNA , Cães , Humanos , Células Madin Darby de Rim Canino , Modelos Biológicos , Proteínas de Resistência a Myxovirus/metabolismo , Nucleoproteínas/química , Estrutura Secundária de Proteína , Temperatura , Proteínas Virais/química
16.
Elife ; 72018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30188321

RESUMO

We systematically and quantitatively evaluate whether endoplasmic reticulum (ER) proteostasis factors impact the mutational tolerance of secretory pathway proteins. We focus on influenza hemaggluttinin (HA), a viral membrane protein that folds in the host's ER via a complex pathway. By integrating chemical methods to modulate ER proteostasis with deep mutational scanning to assess mutational tolerance, we discover that upregulation of ER proteostasis factors broadly enhances HA mutational tolerance across diverse structural elements. Remarkably, this proteostasis network-enhanced mutational tolerance occurs at the same sites where mutational tolerance is most reduced by propagation at fever-like temperature. These findings have important implications for influenza evolution, because influenza immune escape is contingent on HA possessing sufficient mutational tolerance to evade antibodies while maintaining the capacity to fold and function. More broadly, this work provides the first experimental evidence that ER proteostasis mechanisms define the mutational tolerance and, therefore, the evolution of secretory pathway proteins.


Assuntos
Retículo Endoplasmático/metabolismo , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Mutação , Proteostase , Temperatura , Sequência de Aminoácidos , Estresse do Retículo Endoplasmático/genética , Perfilação da Expressão Gênica , Células HEK293 , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Humanos , Via Secretória/genética , Resposta a Proteínas não Dobradas/genética
17.
Cell Rep ; 24(5): 1342-1354.e5, 2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30067987

RESUMO

Microdeletions involving TBX1 result in variable congenital malformations known collectively as 22q11.2 deletion syndrome (22q11.2DS). Tbx1-deficient mice and zebrafish recapitulate several disease phenotypes, including pharyngeal arch artery (PAA), head muscle (HM), and cardiac outflow tract (OFT) deficiencies. In zebrafish, these structures arise from nkx2.5+ progenitors in pharyngeal arches 2-6. Because pharyngeal arch morphogenesis is compromised in Tbx1-deficient animals, the malformations were considered secondary. Here, we report that the PAA, HM, and OFT phenotypes in tbx1 mutant zebrafish are primary and arise prior to pharyngeal arch morphogenesis from failed specification of the nkx2.5+ pharyngeal lineage. Through in situ analysis and lineage tracing, we reveal that nkx2.5 and tbx1 are co-expressed in this progenitor population. Furthermore, we present evidence suggesting that gdf3-ALK4 signaling is a downstream mediator of nkx2.5+ pharyngeal lineage specification. Collectively, these studies support a cellular mechanism potentially underlying the cardiovascular and craniofacial defects observed in the 22q11.2DS population.


Assuntos
Síndrome da Deleção 22q11/patologia , Diferenciação Celular , Células-Tronco Embrionárias/citologia , Faringe/embriologia , Síndrome da Deleção 22q11/genética , Animais , Linhagem da Célula , Células-Tronco Embrionárias/metabolismo , Proteína Homeobox Nkx-2.5/genética , Proteína Homeobox Nkx-2.5/metabolismo , Faringe/citologia , Fenótipo , Proteínas com Domínio T/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
18.
BMC Genomics ; 19(1): 199, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29703133

RESUMO

BACKGROUND: Ribosomal RNA (rRNA) comprises at least 90% of total RNA extracted from mammalian tissue or cell line samples. Informative transcriptional profiling using massively parallel sequencing technologies requires either enrichment of mature poly-adenylated transcripts or targeted depletion of the rRNA fraction. The latter method is of particular interest because it is compatible with degraded samples such as those extracted from FFPE and also captures transcripts that are not poly-adenylated such as some non-coding RNAs. Here we provide a cross-site study that evaluates the performance of ribosomal RNA removal kits from Illumina, Takara/Clontech, Kapa Biosystems, Lexogen, New England Biolabs and Qiagen on intact and degraded RNA samples. RESULTS: We find that all of the kits are capable of performing significant ribosomal depletion, though there are differences in their ease of use. All kits were able to remove ribosomal RNA to below 20% with intact RNA and identify ~ 14,000 protein coding genes from the Universal Human Reference RNA sample at >1FPKM. Analysis of differentially detected genes between kits suggests that transcript length may be a key factor in library production efficiency. CONCLUSIONS: These results provide a roadmap for labs on the strengths of each of these methods and how best to utilize them.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Ribossômico/isolamento & purificação , Análise de Sequência de RNA/métodos , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Humanos , Poli A/genética , RNA Ribossômico/genética
19.
Cell Host Microbe ; 23(3): 395-406.e4, 2018 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-29478773

RESUMO

The unique relapsing nature of Plasmodium vivax infection is a major barrier to malaria eradication. Upon infection, dormant liver-stage forms, hypnozoites, linger for weeks to months and then relapse to cause recurrent blood-stage infection. Very little is known about hypnozoite biology; definitive biomarkers are lacking and in vitro platforms that support phenotypic studies are needed. Here, we recapitulate the entire liver stage of P. vivax in vitro, using a multiwell format that incorporates micropatterned primary human hepatocyte co-cultures (MPCCs). MPCCs feature key aspects of P. vivax biology, including establishment of persistent small forms and growing schizonts, merosome release, and subsequent infection of reticulocytes. We find that the small forms exhibit previously described hallmarks of hypnozoites, and we pilot MPCCs as a tool for testing candidate anti-hypnozoite drugs. Finally, we employ a hybrid capture strategy and RNA sequencing to describe the hypnozoite transcriptome and gain insight into its biology.


Assuntos
Antimaláricos/farmacologia , Técnicas de Cultura de Células/métodos , Testes de Sensibilidade Parasitária/métodos , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/crescimento & desenvolvimento , Plasmodium vivax/metabolismo , Transcriptoma , Animais , Biomarcadores , Linhagem Celular/parasitologia , Técnicas de Cocultura , Fibroblastos , Hepatócitos/parasitologia , Humanos , Técnicas In Vitro , Cinética , Fígado/parasitologia , Malária Vivax/tratamento farmacológico , Camundongos , Análise de Sequência de RNA , Esporozoítos/efeitos dos fármacos , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/metabolismo
20.
J Am Chem Soc ; 140(7): 2413-2416, 2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29334734

RESUMO

We describe the preparation, evaluation, and application of an S100A12 protein-conjugated solid support, hereafter the "A12-resin", that can remove 99% of Zn(II) from complex biological solutions without significantly perturbing the concentrations of other metal ions. The A12-resin can be applied to selectively deplete Zn(II) from diverse tissue culture media and from other biological fluids, including human serum. To further demonstrate the utility of this approach, we investigated metabolic, transcriptomic, and metallomic responses of HEK293 cells cultured in medium depleted of Zn(II) using S100A12. The resulting data provide insight into how cells respond to acute Zn(II) deficiency. We expect that the A12-resin will facilitate interrogation of disrupted Zn(II) homeostasis in biological settings, uncovering novel roles for Zn(II) in biology.


Assuntos
Proteína S100A12/química , Zinco/isolamento & purificação , Células Cultivadas , Células HEK293 , Humanos , Íons/química , Íons/isolamento & purificação , Íons/metabolismo , Proteína S100A12/metabolismo , Zinco/química , Zinco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...