Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 18547, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34535695

RESUMO

The rotating-crystal magneto-optical detection (RMOD) method has been developed for the rapid and quantitative diagnosis of malaria and tested systematically on various malaria infection models. Very recently, an extended field trial in a high-transmission region of Papua New Guinea demonstrated its great potential for detecting malaria infections, in particular Plasmodium vivax. In the present small-scale field test, carried out in a low-transmission area of Thailand, RMOD confirmed malaria in all samples found to be infected with Plasmodium vivax by microscopy, our reference method. Moreover, the magneto-optical signal for this sample set was typically 1-3 orders of magnitude higher than the cut-off value of RMOD determined on uninfected samples. Based on the serial dilution of the original patient samples, we expect that the method can detect Plasmodium vivax malaria in blood samples with parasite densities as low as [Formula: see text]5-10 parasites per microliter, a limit around the pyrogenic threshold of the infection. In addition, by investigating the correlation between the magnitude of the magneto-optical signal, the parasite density and the erythrocytic stage distribution, we estimate the relative hemozoin production rates of the ring and the trophozoite stages of in vivo Plasmodium vivax infections.


Assuntos
Malária Vivax/diagnóstico , Plasmodium vivax/isolamento & purificação , Humanos , Magnetismo/métodos , Malária Vivax/sangue , Malária Vivax/epidemiologia , Microscopia/métodos , Dispositivos Ópticos , Parasitologia/métodos , Tailândia/epidemiologia
2.
Sci Rep ; 10(1): 14025, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32820190

RESUMO

Emergence of resistant Plasmodium species makes drug efficacy testing a crucial part of malaria control. Here we describe a novel assay for sensitive, fast and simple drug screening via the magneto-optical detection of hemozoin, a natural biomarker formed during the hemoglobin metabolism of Plasmodium species. By quantifying hemozoin production over the intraerythrocytic cycle, we reveal that hemozoin formation is already initiated by ~ 6-12 h old ring-stage parasites. We demonstrate that the new assay is capable of drug efficacy testing with incubation times as short as 6-10 h, using synchronized P. falciparum 3D7 cultures incubated with chloroquine, piperaquine and dihydroartemisinin. The determined 50% inhibitory concentrations agree well with values established by standard assays requiring significantly longer testing time. Accordingly, we conclude that magneto-optical hemozoin detection provides a practical approach for the quick assessment of drug effect with short incubation times, which may also facilitate stage-specific assessment of drug inhibitory effects.


Assuntos
Antimaláricos/farmacologia , Hemeproteínas/análise , Avaliação Pré-Clínica de Medicamentos , Resistência a Medicamentos , Humanos , Plasmodium/efeitos dos fármacos , Plasmodium/crescimento & desenvolvimento
3.
Biomolecules ; 9(10)2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31591333

RESUMO

The rotating-crystal magneto-optical diagnostic (RMOD) technique was developed as a sensitive and rapid platform for malaria diagnosis. Herein, we report a detailed in vivo assessment of the synchronized Plasmodium vinckei lentum strain blood-stage infections by the RMOD method and comparing the results to the unsynchronized Plasmodium yoelii 17X-NL (non-lethal) infections. Furthermore, we assess the hemozoin production and clearance dynamics in chloroquine-treated compared to untreated self-resolving infections by RMOD. The findings of the study suggest that the RMOD signal is directly proportional to the hemozoin content and closely follows the actual parasitemia level. The lack of long-term accumulation of hemozoin in peripheral blood implies a dynamic equilibrium between the hemozoin production rate of the parasites and the immune system's clearing mechanism. Using parasites with synchronous blood stage cycle, which resemble human malaria parasite infections with Plasmodium falciparum and Plasmodium vivax, we are demonstrating that the RMOD detects both hemozoin production and clearance rates with high sensitivity and temporal resolution. Thus, RMOD technique offers a quantitative tool to follow the maturation of the malaria parasites even on sub-cycle timescales.


Assuntos
Hemeproteínas/metabolismo , Malária/diagnóstico , Parasitemia/diagnóstico , Plasmodium/metabolismo , Animais , Análise Química do Sangue , Cloroquina/administração & dosagem , Cloroquina/farmacologia , Modelos Animais de Doenças , Diagnóstico Precoce , Feminino , Hemeproteínas/efeitos dos fármacos , Humanos , Estágios do Ciclo de Vida , Malária/tratamento farmacológico , Camundongos , Microscopia de Polarização , Parasitemia/tratamento farmacológico , Plasmodium/classificação , Plasmodium/efeitos dos fármacos , Sensibilidade e Especificidade
4.
J Phys Condens Matter ; 30(44): 445402, 2018 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-30255852

RESUMO

Local-probe imaging of the ferroelectric domain structure and auxiliary bulk pyroelectric measurements were conducted at low temperatures with the aim to clarify the essential aspects of the orbitally driven phase transition in GaMo4S8, a lacunar spinel crystal that can be viewed as a spin-hole analogue of its GaV4S8 counterpart. We employed multiple scanning probe techniques combined with symmetry and mechanical compatibility analysis to uncover the hierarchical domain structures, developing on the 10-100 nm scale. The identified domain architecture involves a plethora of ferroelectric domain boundaries and junctions, including primary and secondary domain walls in both electrically neutral and charged configurations, and topological line defects transforming neutral secondary walls into two oppositely charged ones.

5.
Rev Sci Instrum ; 89(3): 033702, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29604801

RESUMO

We introduce a scattering-type scanning near-field infrared microscope (s-SNIM) for the local scale near-field sample analysis and spectroscopy from room temperature down to liquid helium (LHe) temperature. The extension of s-SNIM down to T = 5 K is in particular crucial for low-temperature phase transitions, e.g., for the examination of superconductors, as well as low energy excitations. The low temperature (LT) s-SNIM performance is tested with CO2-IR excitation at T = 7 K using a bare Au reference and a structured Si/SiO2-sample. Furthermore, we quantify the impact of local laser heating under the s-SNIM tip apex by monitoring the light-induced ferroelectric-to-paraelectric phase transition of the skyrmion-hosting multiferroic material GaV4S8 at Tc = 42 K. We apply LT s-SNIM to study the spectral response of GaV4S8 and its lateral domain structure in the ferroelectric phase by the mid-IR to THz free-electron laser-light source FELBE at the Helmholtz-Zentrum Dresden-Rossendorf, Germany. Notably, our s-SNIM is based on a non-contact atomic force microscope (AFM) and thus can be complemented in situ by various other AFM techniques, such as topography profiling, piezo-response force microscopy (PFM), and/or Kelvin-probe force microscopy (KPFM). The combination of these methods supports the comprehensive study of the mutual interplay in the topographic, electronic, and optical properties of surfaces from room temperature down to 5 K.

6.
Sci Rep ; 7: 44663, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28294193

RESUMO

GaV4S8 is a multiferroic semiconductor hosting Néel-type magnetic skyrmions dressed with electric polarization. At Ts = 42 K, the compound undergoes a structural phase transition of weakly first-order, from a non-centrosymmetric cubic phase at high temperatures to a polar rhombohedral structure at low temperatures. Below Ts, ferroelectric domains are formed with the electric polarization pointing along any of the four 〈111〉 axes. Although in this material the size and the shape of the ferroelectric-ferroelastic domains may act as important limiting factors in the formation of the Néel-type skyrmion lattice emerging below TC = 13 K, the characteristics of polar domains in GaV4S8 have not been studied yet. Here, we report on the inspection of the local-scale ferroelectric domain distribution in rhombohedral GaV4S8 using low-temperature piezoresponse force microscopy. We observed mechanically and electrically compatible lamellar domain patterns, where the lamellae are aligned parallel to the (100)-type planes with a typical spacing between 100 nm-1.2 µm. Since the magnetic pattern, imaged by atomic force microscopy using a magnetically coated tip, abruptly changes at the domain boundaries, we expect that the control of ferroelectric domain size in polar skyrmion hosts can be exploited for the spatial confinement and manipulation of Néel-type skyrmions.

7.
Sci Rep ; 6: 23218, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26983695

RESUMO

Intense research efforts have been focused on the improvement of the efficiency and sensitivity of malaria diagnostics, especially in resource-limited settings for the detection of asymptomatic infections. Our recently developed magneto-optical (MO) method allows the accurate quantification of malaria pigment crystals (hemozoin) in blood by their magnetically induced rotation. First evaluations of the method using ß-hematin crystals and in vitro P. falciparum cultures implied its potential for high-sensitivity malaria diagnosis. To further investigate this potential, here we study the performance of the method in monitoring the in vivo onset and progression of the blood-stage infection in a rodent malaria model. Our results show that the MO method can detect the first generation of intraerythrocytic P. berghei parasites 66-76 hours after sporozoite injection, demonstrating similar sensitivity to Giesma-stained light microscopy and exceeding that of flow cytometric techniques. Magneto-optical measurements performed during and after the treatment of P. berghei infections revealed that both the follow up under treatment and the detection of later reinfections are feasible with this new technique. The present study demonstrates that the MO method - besides being label and reagent-free, automated and rapid - has a high in vivo sensitivity and is ready for in-field evaluation.


Assuntos
Malária/diagnóstico , Microscopia/métodos , Animais , Anopheles/parasitologia , DNA de Protozoário/genética , DNA de Protozoário/isolamento & purificação , DNA de Protozoário/metabolismo , Modelos Animais de Doenças , Feminino , Citometria de Fluxo/métodos , Hemeproteínas/genética , Hemeproteínas/metabolismo , Estágios do Ciclo de Vida , Malária/parasitologia , Malária/veterinária , Camundongos , Camundongos Endogâmicos BALB C , Microscopia/instrumentação , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium berghei/metabolismo , Plasmodium berghei/patogenicidade , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Reação em Cadeia da Polimerase em Tempo Real
8.
PLoS One ; 9(5): e96981, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24824542

RESUMO

Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO) method which allows high-sensitivity detection of malaria pigment (hemozoin crystals) in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼ 40 parasites per microliter of blood (0.0008% parasitemia) at the ring stage and less than 10 parasites/µL (0.0002% parasitemia) in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs.


Assuntos
Malária/diagnóstico , Biomarcadores/análise , Hemeproteínas/análise , Humanos , Malária/parasitologia , Plasmodium falciparum , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...