Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Ann Oncol ; 35(1): 130-137, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898239

RESUMO

BACKGROUND: We investigated the prognostic value of baseline positron emission tomography (PET) parameters for patients with treatment-naïve follicular lymphoma (FL) in the phase III RELEVANCE trial, comparing the immunomodulatory combination of lenalidomide and rituximab (R2) versus R-chemotherapy (R-chemo), with both regimens followed by R maintenance therapy. PATIENTS AND METHODS: Baseline characteristics of the entire PET-evaluable population (n = 406/1032) were well balanced between treatment arms. The maximal standard uptake value (SUVmax) and the standardized maximal distance between tow lesions (SDmax) were extracted, the standardized distance between two lesions the furthest apart, were extracted. The total metabolic tumor volume (TMTV) was computed using the 41% SUVmax method. RESULTS: With a median follow-up of 6.5 years, the 6-year progression-free survival (PFS) was 57.8%, the median TMTV was 284 cm3, SUVmax was 11.3 and SDmax was 0.32 m-1, with no significant difference between arms. High TMTV (>510 cm3) and FLIPI were associated with an inferior PFS (P = 0.013 and P = 0.006, respectively), whereas SUVmax and SDmax were not (P = 0.08 and P = 0.12, respectively). In multivariable analysis, follicular lymphoma international prognostic index (FLIPI) and TMTV remained significantly associated with PFS (P = 0.0119 and P = 0.0379, respectively). These two adverse factors combined stratified the overall population into three risk groups: patients with no risk factors (40%), with one factor (44%), or with both (16%), with a 6-year PFS of 67.7%, 54.5%, and 41.0%, respectively. No significant interaction between treatment arms and TMTV or FLIPI (P = 0.31 or P = 0.59, respectively) was observed. The high-risk group (high TMTV and FLIPI 3-5) had a similar PFS in both arms (P = 0.45) with a median PFS of 68.4% in the R-chemo arm versus 71.4% in the R2 arm. CONCLUSIONS: Baseline TMTV is predictive of PFS, independently of FLIPI, in patients with advanced FL even in the context of antibody maintenance.


Assuntos
Linfoma Folicular , Humanos , Linfoma Folicular/diagnóstico por imagem , Linfoma Folicular/tratamento farmacológico , Carga Tumoral , Prognóstico , Intervalo Livre de Progressão , Tomografia por Emissão de Pósitrons , Fluordesoxiglucose F18 , Estudos Retrospectivos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos
2.
Ann Oncol ; 32(3): 404-411, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33278600

RESUMO

BACKGROUND: We analyzed the prognostic value of a new baseline positron emission tomography (PET) parameter reflecting the spread of the disease, the largest distance between two lesions (Dmax). We tested its complementarity to metabolic tumor volume (MTV) in a large cohort of diffuse large B-cell lymphoma (DLBCL) patients from the REMARC trial (NCT01122472). PATIENTS AND METHODS: MTVs were defined using the 41% maximum standardized uptake value threshold. From the three-dimensional coordinates, the centroid of each lesion was automatically obtained and considered as the lesion location. The distances between all pairs were calculated. Dmax was obtained for each patient and normalized with the body surface area [standardized Dmax (SDmax)]. RESULTS: From the REMARC trial, 290 patients aged 60-80 years were included: 91% had an advanced stage and 71% International Prognostic Index (IPI) ≥3. High versus low SDmax significantly impacted progression-free survival (PFS) (P < 0.0001) and overall survival (OS) (P = 0.0027). Patients with SDmax > 0.32 m-1 (n = 82) had a 4-year PFS and OS of 46% and 71%, respectively, against 77% and 87%, respectively, for patients with low SDmax. High SDmax and high MTV were independent prognostic factors of PFS (P = 0.0001 and P = 0.0010, respectively) and OS (P = 0.0028 and P = 0.0004, respectively). Combining MTV and SDmax yielded three risk groups with no (n = 109), one (n = 122) or two (n = 59) factors (P < 0.0001 for both PFS and OS). The 4-year PFS were 90%, 63%, 41%, respectively, and the 4-year OS were 95%, 79%, 66%, respectively. In addition, patients with at least two of the three factors including high SDmax, high MTV, Eastern Cooperative Oncology Group (ECOG) ≥2 had a higher number of central nervous system relapse (P = 0.017). CONCLUSIONS: SDmax is a simple feature that captures lymphoma dissemination, independent from MTV. These two PET metrics, SDmax and MTV, are complementary to characterize the disease, reflecting the tumor burden and its spread. This score appeared promising for DLBCL baseline risk stratification.


Assuntos
Linfoma Difuso de Grandes Células B , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Idoso , Idoso de 80 Anos ou mais , Fluordesoxiglucose F18 , Humanos , Estimativa de Kaplan-Meier , Linfoma Difuso de Grandes Células B/diagnóstico por imagem , Linfoma Difuso de Grandes Células B/tratamento farmacológico , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Tomografia por Emissão de Pósitrons , Prognóstico , Estudos Retrospectivos , Medição de Risco , Carga Tumoral
3.
Phys Med ; 64: 195-203, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31515020

RESUMO

The aim of this work is to perform Monte Carlo simulations of a proton pencil beam scanning machine, characterise the low-dose envelope of scanned proton beams and assess the differences between various approximations for nozzle geometry. Measurements and Monte Carlo simulations were carried out in order to describe the dose distribution of a proton pencil beam in water for energies between 100 and 220 MeV. Dose distributions were simulated by using a Geant4 Monte Carlo platform (TOPAS), and were measured in water using a two-dimensional ion chamber array detector. The beam source in air was adjusted for each configuration. Double Gaussian parameterisation was proposed for definition of the beam source model in order to improve simulations starting at the nozzle exit. Absolute dose distributions and field size factors were measured and compared with simulations. The influence of the high-density components present in the treatment nozzle was also investigated by analysis of proton phase spaces at the nozzle exit. An excellent agreement was observed between experimental dose distributions and simulations for energies higher than 160 MeV. However, minor differences were observed between 100 and 160 MeV, suggesting poorer modelling of the beam when the full treatment head was not taken into account. We found that the first ionisation chamber was the main cause of the tail component observed for low proton beam energies. In this work, various parameterisations of proton sources were proposed, thereby allowing reproduction of the low-dose envelope of proton beams and excellent agreement with measured data.


Assuntos
Método de Monte Carlo , Terapia com Prótons/métodos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador
4.
Phys Med Biol ; 60(6): 2475-91, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25739884

RESUMO

Iodine-124 is a radionuclide well suited to the labeling of intact monoclonal antibodies. Yet, accurate quantification in preclinical imaging with I-124 is challenging due to the large positron range and a complex decay scheme including high-energy gammas. The aim of this work was to assess the quantitative performance of a fully 3D Monte Carlo (MC) reconstruction for preclinical I-124 PET. The high-resolution small animal PET Inveon (Siemens) was simulated using GATE 6.1. Three system matrices (SM) of different complexity were calculated in addition to a Siddon-based ray tracing approach for comparison purpose. Each system matrix accounted for a more or less complete description of the physics processes both in the scanned object and in the PET scanner. One homogeneous water phantom and three heterogeneous phantoms including water, lungs and bones were simulated, where hot and cold regions were used to assess activity recovery as well as the trade-off between contrast recovery and noise in different regions. The benefit of accounting for scatter, attenuation, positron range and spurious coincidences occurring in the object when calculating the system matrix used to reconstruct I-124 PET images was highlighted. We found that the use of an MC SM including a thorough modelling of the detector response and physical effects in a uniform water-equivalent phantom was efficient to get reasonable quantitative accuracy in homogeneous and heterogeneous phantoms. Modelling the phantom heterogeneities in the SM did not necessarily yield the most accurate estimate of the activity distribution, due to the high variance affecting many SM elements in the most sophisticated SM.


Assuntos
Simulação por Computador , Imageamento Tridimensional/métodos , Radioisótopos do Iodo/farmacocinética , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Imageamento Tridimensional/instrumentação , Método de Monte Carlo , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação
5.
Comput Methods Programs Biomed ; 118(1): 84-93, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25459525

RESUMO

In PET/CT thoracic imaging, respiratory motion reduces image quality. A solution consists in performing respiratory gated PET acquisitions. The aim of this study was to generate clinically realistic Monte-Carlo respiratory PET data, obtained using the 4D-NCAT numerical phantom and the GATE simulation tool, to assess the impact of respiratory motion and respiratory-motion compensation in PET on lesion detection and volume measurement. To obtain reconstructed images as close as possible to those obtained in clinical conditions, a particular attention was paid to apply to the simulated data the same correction and reconstruction processes as those applied to real clinical data. The simulations required 140,000h (CPU) generating 1.5 To of data (98 respiratory gated and 49 ungated scans). Calibration phantom and patient reconstructed images from the simulated data were visually and quantitatively very similar to those obtained in clinical studies. The lesion detectability was higher when the better trade-off between lesion movement limitation (compared to ungated acquisitions) and image statistic preservation is considered (respiratory cycle sampling in 3 frames). We then compared the lesion volumes measured on conventional PET acquisitions versus respiratory gated acquisitions, using an automatic segmentation method and a 40%-threshold approach. A time consuming initial manual exclusion of noisy structures needed with the 40%-threshold was not necessary when the automatic method was used. The lesion detectability along with the accuracy of tumor volume estimates was largely improved with the gated compared to ungated PET images.


Assuntos
Neoplasias Pulmonares/diagnóstico por imagem , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Simulação por Computador , Fluordesoxiglucose F18 , Humanos , Interpretação de Imagem Assistida por Computador , Imageamento Tridimensional , Neoplasias Pulmonares/radioterapia , Método de Monte Carlo , Imagens de Fantasmas , Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Compostos Radiofarmacêuticos , Planejamento da Radioterapia Assistida por Computador , Mecânica Respiratória
6.
Phys Med Biol ; 58(21): 7527-42, 2013 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-24099932

RESUMO

We evaluated the impact of partial volume effect (PVE) in the assessment of arterial diseases with (18)FDG PET. An anthropomorphic digital phantom enabling the modeling of aorta related diseases like atherosclerosis and arteritis was used. Based on this phantom, we performed GATE Monte Carlo simulations to produce realistic PET images with a known organ segmentation and ground truth activity values. Images corresponding to 15 different activity-concentration ratios between the aortic wall and the blood and to 7 different wall thicknesses were generated. Using the PET images, we compared the theoretical wall-to-blood activity-concentration ratios (WBRs) with the measured WBRs obtained with five measurement methods: (1) measurement made by a physician (Expert), (2) automated measurement supposed to mimic the physician measurements (Max), (3) simple correction based on a recovery coefficient (Max-RC), (4) measurement based on an ideal VOI segmentation (Mean-VOI) and (5) measurement corrected for PVE using an ideal geometric transfer matrix (GTM) method. We found that Mean-VOI WBRs values were strongly affected by PVE. WBRs obtained by the physician measurement, by the Max method and by the Max-RC method were more accurate than WBRs obtained with the Mean-VOI approach. However Expert, Max and Max-RC WBRs strongly depended on the wall thickness. Only the GTM corrected WBRs did not depend on the wall thickness. Using the GTM method, we obtained more reproducible ratio values that could be compared across wall thickness. Yet, the feasibility of the implementation of a GTM-like method on real data remains to be studied.


Assuntos
Aorta/diagnóstico por imagem , Artefatos , Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Imagens de Fantasmas
7.
Phys Med Biol ; 58(19): 6931-44, 2013 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-24029620

RESUMO

Segmentation is often required for the analysis of dynamic positron emission tomography (PET) images. However, noise and low spatial resolution make it a difficult task and several supervised and unsupervised methods have been proposed in the literature to perform the segmentation based on semi-automatic clustering of the time activity curves of voxels. In this paper we propose a new method based on spectral clustering that does not require any prior information on the shape of clusters in the space in which they are identified. In our approach, the p-dimensional data, where p is the number of time frames, is first mapped into a high dimensional space and then clustering is performed in a low-dimensional space of the Laplacian matrix. An estimation of the bounds for the scale parameter involved in the spectral clustering is derived. The method is assessed using dynamic brain PET images simulated with GATE and results on real images are presented. We demonstrate the usefulness of the method and its superior performance over three other clustering methods from the literature. The proposed approach appears as a promising pre-processing tool before parametric map calculation or ROI-based quantification tasks.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Animais , Radioisótopos de Flúor , Cinética , Método de Monte Carlo , Imagens de Fantasmas , Pirazóis , Pirimidinas , Ratos
8.
Phys Med Biol ; 58(12): 4175-94, 2013 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-23715413

RESUMO

Our aim is to describe an original method for estimating the statistical properties of regions of interest (ROIs) in emission tomography. Drawn upon the works of Louis on the approximate inverse, we propose a dual formulation of the ROI estimation problem to derive the ROI activity and variance directly from the measured data without any image reconstruction. The method requires the definition of an ROI characteristic function that can be extracted from a co-registered morphological image. This characteristic function can be smoothed to optimize the resolution-variance tradeoff. An iterative procedure is detailed for the solution of the dual problem in the least-squares sense (least-squares dual (LSD) characterization), and a linear extrapolation scheme is described to compensate for sampling partial volume effect and reduce the estimation bias (LSD-ex). LSD and LSD-ex are compared with classical ROI estimation using pixel summation after image reconstruction and with Huesman's method. For this comparison, we used Monte Carlo simulations (GATE simulation tool) of 2D PET data of a Hoffman brain phantom containing three small uniform high-contrast ROIs and a large non-uniform low-contrast ROI. Our results show that the performances of LSD characterization are at least as good as those of the classical methods in terms of root mean square (RMS) error. For the three small tumor regions, LSD-ex allows a reduction in the estimation bias by up to 14%, resulting in a reduction in the RMS error of up to 8.5%, compared with the optimal classical estimation. For the large non-specific region, LSD using appropriate smoothing could intuitively and efficiently handle the resolution-variance tradeoff.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Encéfalo/diagnóstico por imagem , Análise dos Mínimos Quadrados , Método de Monte Carlo , Imagens de Fantasmas
9.
Phys Med Biol ; 58(9): 2879-99, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23571094

RESUMO

Monte Carlo simulations play a crucial role for in-vivo treatment monitoring based on PET and prompt gamma imaging in proton and carbon-ion therapies. The accuracy of the nuclear fragmentation models implemented in these codes might affect the quality of the treatment verification. In this paper, we investigate the nuclear models implemented in GATE/Geant4 and FLUKA by comparing the angular and energy distributions of secondary particles exiting a homogeneous target of PMMA. Comparison results were restricted to fragmentation of (16)O and (12)C. Despite the very simple target and set-up, substantial discrepancies were observed between the two codes. For instance, the number of high energy (>1 MeV) prompt gammas exiting the target was about twice as large with GATE/Geant4 than with FLUKA both for proton and carbon ion beams. Such differences were not observed for the predicted annihilation photon production yields, for which ratios of 1.09 and 1.20 were obtained between GATE and FLUKA for the proton beam and the carbon ion beam, respectively. For neutrons and protons, discrepancies from 14% (exiting protons-carbon ion beam) to 57% (exiting neutrons-proton beam) have been identified in production yields as well as in the energy spectra for neutrons.


Assuntos
Radioterapia com Íons Pesados/métodos , Método de Monte Carlo , Terapia com Prótons , Planejamento da Radioterapia Assistida por Computador/métodos , Nêutrons , Dosagem Radioterapêutica , Fatores de Tempo
10.
Phys Med Biol ; 57(6): 1659-73, 2012 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-22398196

RESUMO

Positron emission tomography (PET) is a promising tool for monitoring the three-dimensional dose distribution in charged particle radiotherapy. PET imaging during or shortly after proton treatment is based on the detection of annihilation photons following the ß(+)-decay of radionuclides resulting from nuclear reactions in the irradiated tissue. Therapy monitoring is achieved by comparing the measured spatial distribution of irradiation-induced ß(+)-activity with the predicted distribution based on the treatment plan. The accuracy of the calculated distribution depends on the correctness of the computational models, implemented in the employed Monte Carlo (MC) codes that describe the interactions of the charged particle beam with matter and the production of radionuclides and secondary particles. However, no well-established theoretical models exist for predicting the nuclear interactions and so phenomenological models are typically used based on parameters derived from experimental data. Unfortunately, the experimental data presently available are insufficient to validate such phenomenological hadronic interaction models. Hence, a comparison among the models used by the different MC packages is desirable. In this work, starting from a common geometry, we compare the performances of MCNPX, GATE and PHITS MC codes in predicting the amount and spatial distribution of proton-induced activity, at therapeutic energies, to the already experimentally validated PET modelling based on the FLUKA MC code. In particular, we show how the amount of ß(+)-emitters produced in tissue-like media depends on the physics model and cross-sectional data used to describe the proton nuclear interactions, thus calling for future experimental campaigns aiming at supporting improvements of MC modelling for clinical application of PET monitoring.


Assuntos
Tomografia por Emissão de Pósitrons/estatística & dados numéricos , Terapia com Prótons , Fenômenos Biofísicos , Elétrons , Humanos , Modelos Estatísticos , Método de Monte Carlo , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Software
11.
Phys Med Biol ; 56(19): 6441-57, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-21934192

RESUMO

Monte Carlo simulations of emission tomography have proven useful to assist detector design and optimize acquisition and processing protocols. The more realistic the simulations, the more straightforward the extrapolation of conclusions to clinical situations. In emission tomography, accurate numerical models of tomographs have been described and well validated under specific operating conditions (collimator, radionuclide, acquisition parameters, count rates, etc). When using these models under these operating conditions, the realism of simulations mostly depends on the activity distribution used as an input for the simulations. It has been proposed to derive the input activity distribution directly from reconstructed clinical images, so as to properly model the heterogeneity of the activity distribution between and within organs. However, reconstructed patient images include noise and have limited spatial resolution. In this study, we analyse the properties of the simulated images as a function of the properties of the reconstructed images used to define the input activity distributions in (18)F-FDG PET and (131)I SPECT simulations. The propagation through the simulation/reconstruction process of the noise and spatial resolution in the input activity distribution was studied using simulations. We found that the noise properties of the images reconstructed from the simulated data were almost independent of the noise in the input activity distribution. The spatial resolution in the images reconstructed from the simulations was slightly poorer than that in the input activity distribution. However, using high-noise but high-resolution patient images as an input activity distribution yielded reconstructed images that could not be distinguished from clinical images. These findings were confirmed by simulated highly realistic (131)I SPECT and (18)F-FDG PET images from patient data. In conclusion, we demonstrated that (131)I SPECT and (18)F-FDG PET images indistinguishable from real scans can be simulated using activity maps with spatial resolution higher than that used in routine clinical applications.


Assuntos
Simulação por Computador , Processamento de Imagem Assistida por Computador/métodos , Método de Monte Carlo , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Radioisótopos de Flúor , Humanos , Radioisótopos do Iodo , Tomografia por Emissão de Pósitrons/instrumentação , Sensibilidade e Especificidade , Razão Sinal-Ruído , Tomografia Computadorizada de Emissão de Fóton Único/instrumentação
12.
Phys Med Biol ; 56(20): 6583-96, 2011 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-21937774

RESUMO

Positron emission tomography (PET) images are corrupted by noise. This is especially true in dynamic PET imaging where short frames are required to capture the peak of activity concentration after the radiotracer injection. High noise results in a possible bias in quantification, as the compartmental models used to estimate the kinetic parameters are sensitive to noise. This paper describes a new post-reconstruction filter to increase the signal-to-noise ratio in dynamic PET imaging. It consists in a spatio-temporal robust diffusion of the 4D image based on the time activity curve (TAC) in each voxel. It reduces the noise in homogeneous areas while preserving the distinct kinetics in regions of interest corresponding to different underlying physiological processes. Neither anatomical priors nor the kinetic model are required. We propose an automatic selection of the scale parameter involved in the diffusion process based on a robust statistical analysis of the distances between TACs. The method is evaluated using Monte Carlo simulations of brain activity distributions. We demonstrate the usefulness of the method and its superior performance over two other post-reconstruction spatial and temporal filters. Our simulations suggest that the proposed method can be used to significantly increase the signal-to-noise ratio in dynamic PET imaging.


Assuntos
Tomografia por Emissão de Pósitrons/métodos , Anisotropia , Difusão , Processamento de Imagem Assistida por Computador , Modelos Teóricos , Distribuição Normal , Imagens de Fantasmas , Razão Sinal-Ruído , Fatores de Tempo
14.
Phys Med Biol ; 56(4): 881-901, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21248393

RESUMO

GATE (Geant4 Application for Emission Tomography) is a Monte Carlo simulation platform developed by the OpenGATE collaboration since 2001 and first publicly released in 2004. Dedicated to the modelling of planar scintigraphy, single photon emission computed tomography (SPECT) and positron emission tomography (PET) acquisitions, this platform is widely used to assist PET and SPECT research. A recent extension of this platform, released by the OpenGATE collaboration as GATE V6, now also enables modelling of x-ray computed tomography and radiation therapy experiments. This paper presents an overview of the main additions and improvements implemented in GATE since the publication of the initial GATE paper (Jan et al 2004 Phys. Med. Biol. 49 4543-61). This includes new models available in GATE to simulate optical and hadronic processes, novelties in modelling tracer, organ or detector motion, new options for speeding up GATE simulations, examples illustrating the use of GATE V6 in radiotherapy applications and CT simulations, and preliminary results regarding the validation of GATE V6 for radiation therapy applications. Upon completion of extensive validation studies, GATE is expected to become a valuable tool for simulations involving both radiotherapy and imaging.


Assuntos
Modelos Teóricos , Método de Monte Carlo , Radioterapia/métodos , Tomografia Computadorizada por Raios X/métodos , Benchmarking , Elétrons/uso terapêutico , Humanos , Movimento (Física) , Fótons/uso terapêutico , Tomografia por Emissão de Pósitrons , Terapia com Prótons , Reprodutibilidade dos Testes
15.
Phys Med Biol ; 56(3): 793-809, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21239844

RESUMO

Positron emission tomography (PET) images suffer from low spatial resolution and signal-to-noise ratio. Accurate modelling of the effects affecting resolution within iterative reconstruction algorithms can improve the trade-off between spatial resolution and signal-to-noise ratio in PET images. In this work, we present an original approach for modelling the resolution loss introduced by physical interactions between and within the crystals of the tomograph and we investigate the impact of such modelling on the quality of the reconstructed images. The proposed model includes two components: modelling of the inter-crystal scattering and penetration (interC) and modelling of the intra-crystal count distribution (intraC). The parameters of the model were obtained using a Monte Carlo simulation of the Philips GEMINI GXL response. Modelling was applied to the raw line-of-response geometric histograms along the four dimensions and introduced in an iterative reconstruction algorithm. The impact of modelling interC, intraC or combined interC and intraC on spatial resolution, contrast recovery and noise was studied using simulated phantoms. The feasibility of modelling interC and intraC in two clinical (18)F-NaF scans was also studied. Measurements on Monte Carlo simulated data showed that, without any crystal interaction modelling, the radial spatial resolution in air varied from 5.3 mm FWHM at the centre of the field-of-view (FOV) to 10 mm at 266 mm from the centre. Resolution was improved with interC modelling (from 4.4 mm in the centre to 9.6 mm at the edge), or with intraC modelling only (from 4.8 mm in the centre to 4.3 mm at the edge), and it became stationary across the FOV (4.2 mm FWHM) when combining interC and intraC modelling. This improvement in resolution yielded significant contrast enhancement, e.g. from 65 to 76% and 55.5 to 68% for a 6.35 mm radius sphere with a 3.5 sphere-to-background activity ratio at 55 and 215 mm from the centre of the FOV, respectively, without introducing additional noise. Patient images confirmed the usefulness of interC and intraC modelling for improving spatial resolution and contrast. Based on Monte Carlo simulated data, we conclude that four-dimensional modelling of the inter- and intra-crystal interactions during the reconstruction process yields a significantly improved contrast to noise ratio and the stationarity of the spatial resolution in the reconstructed images.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Modelos Teóricos , Tomografia por Emissão de Pósitrons/métodos , Algoritmos , Humanos , Método de Monte Carlo , Imagens de Fantasmas
16.
IEEE Trans Med Imaging ; 29(7): 1442-54, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20409989

RESUMO

Two groups of bootstrap methods have been proposed to estimate the statistical properties of positron emission tomography (PET) images by generating multiple statistically equivalent data sets from few data samples. The first group generates resampled data based on a parametric approach assuming that data from which resampling is performed follows a Poisson distribution while the second group consists of nonparametric approaches. These methods either require a unique original sample or a series of statistically equivalent data that can be list-mode files or sinograms. Previous reports regarding these bootstrap approaches suggest different results. This work compares the accuracy of three of these bootstrap methods for 3-D PET imaging based on simulated data. Two methods are based on a unique file, namely a list-mode based nonparametric (LMNP) method and a sinogram based parametric (SP) method. The third method is a sinogram-based nonparametric (SNP) method. Another original method (extended LMNP) was also investigated, which is an extension of the LMNP methods based on deriving a resampled list-mode file by drawings events from multiple original list-mode files. Our comparison is based on the analysis of the statistical moments estimated on the repeated and resampled data. This includes the probability density function and the moments of order 1 and 2. Results show that the two methods based on multiple original data (SNP and extended LMNP) are the only methods that correctly estimate the statistical parameters. Performances of the LMNP and SP methods are variable. Simulated data used in this study were characterized by a high noise level. Differences among the tested strategies might be reduced with clinical data sets with lower noise.


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Processamento de Sinais Assistido por Computador , Humanos , Reprodutibilidade dos Testes , Tamanho da Amostra , Sensibilidade e Especificidade
17.
Phys Med Biol ; 55(9): N253-66, 2010 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-20393239

RESUMO

Among Monte Carlo simulation codes in medical imaging, the GATE simulation platform is widely used today given its flexibility and accuracy, despite long run times, which in SPECT simulations are mostly spent in tracking photons through the collimators. In this work, a tabulated model of the collimator/detector response was implemented within the GATE framework to significantly reduce the simulation times in SPECT. This implementation uses the angular response function (ARF) model. The performance of the implemented ARF approach has been compared to standard SPECT GATE simulations in terms of the ARF tables' accuracy, overall SPECT system performance and run times. Considering the simulation of the Siemens Symbia T SPECT system using high-energy collimators, differences of less than 1% were measured between the ARF-based and the standard GATE-based simulations, while considering the same noise level in the projections, acceleration factors of up to 180 were obtained when simulating a planar 364 keV source seen with the same SPECT system. The ARF-based and the standard GATE simulation results also agreed very well when considering a four-head SPECT simulation of a realistic Jaszczak phantom filled with iodine-131, with a resulting acceleration factor of 100. In conclusion, the implementation of an ARF-based model of collimator/detector response for SPECT simulations within GATE significantly reduces the simulation run times without compromising accuracy.


Assuntos
Simulação por Computador , Método de Monte Carlo , Tomografia Computadorizada de Emissão de Fóton Único , Benchmarking , Reprodutibilidade dos Testes
18.
Phys Med Biol ; 54(6): 1705-21, 2009 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-19242055

RESUMO

(18)F-fluoro-deoxy-glucose ((18)F-FDG) positron emission tomography (PET) is one of the most sensitive and specific imaging modalities for the diagnosis of non-small cell lung cancer. A drawback of PET is that it requires several minutes of acquisition per bed position, which results in images being affected by respiratory blur. Respiratory gating techniques have been developed to deal with respiratory motion in the PET images. However, these techniques considerably increase the level of noise in the reconstructed images unless the acquisition time is increased. The aim of this paper is to evaluate a four-dimensional (4D) image reconstruction algorithm that combines the acquired events in all the gates whilst preserving the motion deblurring. This algorithm was compared to classic ordered subset expectation maximization (OSEM) reconstruction of gated and non-gated images, and to temporal filtering of gated images reconstructed with OSEM. Two datasets were used for comparing the different reconstruction approaches: one involving the NEMA IEC/2001 body phantom in motion, the other obtained using Monte-Carlo simulations of the NCAT breathing phantom. Results show that 4D reconstruction reaches a similar performance in terms of the signal-to-noise ratio (SNR) as non-gated reconstruction whilst preserving the motion deblurring. In particular, 4D reconstruction improves the SNR compared to respiratory-gated images reconstructed with the OSEM algorithm. Temporal filtering of the OSEM-reconstructed images helps improve the SNR, but does not achieve the same performance as 4D reconstruction. 4D reconstruction of respiratory-gated images thus appears as a promising tool to reach the same performance in terms of the SNR as non-gated acquisitions while reducing the motion blur, without increasing the acquisition time.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Tomografia por Emissão de Pósitrons/métodos , Técnicas de Imagem de Sincronização Respiratória/métodos , Artefatos , Humanos , Modelos Biológicos , Movimento , Imagens de Fantasmas , Reprodutibilidade dos Testes
19.
AJNR Am J Neuroradiol ; 27(5): 1059-69, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16687543

RESUMO

BACKGROUND AND PURPOSE: Brain hypervascular diseases are complex and induce hemodynamic disturbances on brain parenchyma, which are difficult to accurately evaluate by using perfusion-weighted (PWI) MR imaging. Our purpose was to test and to assess the best AIF estimation method among 4 patients with brain hypervascular disease and healthy volunteers. METHODS: Thirty-three patients and 10 healthy volunteers underwent brain perfusion studies by using a 1.5T MR imaging scanner with gadolinium-chelate bolus injection. PWI was performed with the indicator dilution method. AIF estimation methods were performed with local, regional, regional scaled, and global estimated arterial input function (AIF), and PWI measurements (cerebral blood volume [CBV] and cerebral blood flow [CBF]) were performed with regions of interest drawn on the thalami and centrum semiovale in all subjects, remote from the brain hypervascular disease nidus. Abnormal PWI results were assessed by using Z Score, and evaluation of the best AIF estimation method was performed by using a no gold standard evaluation method. RESULTS: From 88% to 97% of patients had overall abnormal perfusion areas of hypo- (decreased CBV and CBF) and/or hyperperfusion (increased CBV and CBF) and/or venous congestion (increased CBV, normal or decreased CBF), depending on the AIF estimation method used for PWI computations. No gold standard evaluation of the 4 AIF estimates found the regional and the regional scaled methods to be the most accurate. CONCLUSION: Brain hypervascular disease induces remote brain perfusion abnormalities that can be better detected by using PWI with regional or regional scaled AIF estimation methods.


Assuntos
Volume Sanguíneo , Circulação Cerebrovascular , Transtornos Cerebrovasculares/diagnóstico , Transtornos Cerebrovasculares/fisiopatologia , Angiografia por Ressonância Magnética , Adolescente , Adulto , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
20.
Phys Med Biol ; 50(16): 3739-54, 2005 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-16077224

RESUMO

In single photon emission computed tomography (SPECT) with parallel hole collimation, image reconstruction is usually performed as a set of bidimensional (2D) analytical or iterative reconstructions. This approach ignores the tridimensional (3D) nature of scatter and detector response function that affects the detected signal. To deal with the 3D nature of the image formation process, iterative reconstruction can be used by considering a 3D projector modelling the 3D spread of photons. In this paper, we investigate the value of using accurate Monte Carlo simulations to determine the 3D projector used in a fully 3D Monte Carlo (F3DMC) reconstruction approach. Given the 3D projector modelling all physical effects affecting the imaging process, the reconstruction problem is solved using the maximum likelihood expectation maximization (MLEM) algorithm. To validate the concept, three data sets were simulated and F3DMC was compared with two other 3D reconstruction strategies using analytical corrections for attenuation, scatter and camera point spread function. Results suggest that F3DMC improves spatial resolution, relative and absolute quantitation and signal-to-noise ratio. The practical feasibility of the approach on real data sets is discussed.


Assuntos
Tomografia Computadorizada de Emissão de Fóton Único/métodos , Algoritmos , Simulação por Computador , Estudos de Viabilidade , Humanos , Aumento da Imagem , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Funções Verossimilhança , Método de Monte Carlo , Imagens de Fantasmas , Fótons , Reprodutibilidade dos Testes , Espalhamento de Radiação , Estatística como Assunto , Tomografia Computadorizada de Emissão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...