Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 14(8)2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37630162

RESUMO

Dielectrophoresis (DEP) is one of the microfluid-based techniques that can manipulate the red blood cells (RBC) for blood plasma separation, which is used in many medical screening/diagnosis applications. The tapered aluminium microelectrode array (TAMA) is fabricated for potential sensitivity enhancement of RBC manipulation in lateral and vertical directions. In this paper, the migration properties of dielectrophoretically manipulated RBC in TAMA platform are studied at different peak-to-peak voltage (Vpp) and duration supplied onto the microelectrodes. Positive DEP manipulation is conducted at 440 kHz with the RBC of 4.00 ± 0.2 µm average radius attracted to the higher electric field intensity regions, which are the microelectrodes. High percentage of RBC migration occurred at longer manipulation time and high electrode voltage. During DEP manipulation, the RBC are postulated to levitate upwards, experience the electro-orientation mechanism and form the pearl chains before migrating to the electrodes. The presence of external forces other than the dielectrophoretic force may also affect the migration response of RBC. The safe operating limit of 10 Vpp and manipulation duration of ≤50 s prevent RBC rupture while providing high migration percentage. It is crucial to define the safe working region for TAMA devices that manipulate small RBC volume (~10 µL).

2.
Electrophoresis ; 44(15-16): 1220-1233, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37259263

RESUMO

Characterization of antibiotic-resistant bacteria is a significant concern that persists for the rapid classification and analysis of the bacteria. A technology that utilizes the manipulation of antibiotic-resistant bacteria is key to solving the significant threat of these pathogenic bacteria by rapid characterization profile. Dielectrophoresis (DEP) can differentiate between antibiotic-resistant and susceptible bacteria based on their physical structure and polarization properties. In this work, the DEP response of two Gram-positive bacteria, namely, Methicillin-resistant Staphylococcus aureus (MRSA) and Methicillin-susceptible S. aureus (MSSA), was investigated and simulated. The DEP characterization was experimentally observed on the bacteria influenced by oxacillin and vancomycin antibiotics. MSSA control without antibiotics has crossover frequencies ( f x 0 ${f_{x0}}$ ) from 6 to 8 MHz, whereas MRSA control is from 2 to 3 MHz. The f x 0 ${f_{x0}}$ changed when bacteria were exposed to the antibiotic. As for MSSA, the f x 0 ${f_{x0}}$ decreased to 3.35 MHz compared to f x 0 ${f_{x0}}$ MSSA control without antibiotics, MRSA, f x 0 ${f_{x0}}$ increased to 7 MHz when compared to MRSA control. The changes in the DEP response of MSSA and MRSA with and without antibiotics were theoretically proven using MyDEP and COMSOL simulation and experimentally based on the modification to the bacteria cell walls. Thus, the DEP response can be employed as a label-free detectable method to sense and differentiate between resistant and susceptible strains with different antibiotic profiles. The developed method can be implemented on a single platform to analyze and identify bacteria for rapid, scalable, and accurate characterization.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Staphylococcus aureus , Antibacterianos/farmacologia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Meticilina , Testes de Sensibilidade Microbiana
3.
Polymers (Basel) ; 15(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37050362

RESUMO

This paper reports the development of ZnO NRs/rGO-based photocatalysts integrated into a tree-branched polymer-based microfluidic reactor for efficient photodegradation of water contaminants. The reactor system includes a photocatalytic reactor, tree-branched microfluidic channels, and ZnO nanorods (NRs) coated with reduced graphene oxide (rGO) on a glass substrate within an area of 0.6 × 0.6 cm2. The ZnO NRs/rGO acts as a photocatalyst layer grown hydrothermally and then spray-coated with rGO. The microfluidic system is made of PDMS and fabricated using soft lithography (micro molding using SU-8 master mold patterned on a silicon wafer). The device geometry is designed using AutoCAD software and the flow properties of the microfluidics are simulated using COMSOL Multiphysics. The microfluidic platform's photocatalytic process aims to bring the nanostructured photocatalyst into very close proximity to the water flow channel, reducing the interaction time and providing effective purification performance. Our functionality test showed that a degradation efficiency of 23.12 %, within the effective residence time of less than 3 s was obtained.

4.
Polymers (Basel) ; 15(7)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37050380

RESUMO

Over the last several decades, numerous modifications and advancements have been made to design the optimal corneal biomatrix for corneal epithelial cell (CECs) or limbal epithelial stem cell (LESC) carriers. However, researchers have yet to discover the ideal optimization strategies for corneal biomatrix design and its effects on cultured CECs or LESCs. This review discusses and summarizes recent optimization strategies for developing an ideal collagen biomatrix and its interactions with CECs and LESCs. Using PRISMA guidelines, articles published from June 2012 to June 2022 were systematically searched using Web of Science (WoS), Scopus, PubMed, Wiley, and EBSCOhost databases. The literature search identified 444 potential relevant published articles, with 29 relevant articles selected based on inclusion and exclusion criteria following screening and appraising processes. Physicochemical and biocompatibility (in vitro and in vivo) characterization methods are highlighted, which are inconsistent throughout various studies. Despite the variability in the methodology approach, it is postulated that the modification of the collagen biomatrix improves its mechanical and biocompatibility properties toward CECs and LESCs. All findings are discussed in this review, which provides a general view of recent trends in this field.

5.
Electrophoresis ; 44(5-6): 573-620, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36604943

RESUMO

Dielectrophoresis (DEP) bioparticle research has progressed from micro to nano levels. It has proven to be a promising and powerful cell manipulation method with an accurate, quick, inexpensive, and label-free technique for therapeutic purposes. DEP, an electrokinetic phenomenon, induces particle movement as a result of polarization effects in a nonuniform electrical field. This review focuses on current research in the biomedical field that demonstrates a practical approach to DEP in terms of cell separation, trapping, discrimination, and enrichment under the influence of the conductive medium in correlation with bioparticle viability. The current review aims to provide readers with an in-depth knowledge of the fundamental theory and principles of the DEP technique, which is influenced by conductive medium and to identify and demonstrate the biomedical application areas. The high conductivity of physiological fluids presents obstacles and opportunities, followed by bioparticle viability in an electric field elaborated in detail. Finally, the drawbacks of DEP-based systems and the outlook for the future are addressed. This article will aid in advancing technology by bridging the gap between bioscience and engineering. We hope the insights presented in this review will improve cell suspension medium and promote DEP-viable bioparticle manipulation for health-care diagnostics and therapeutics.


Assuntos
Eletroforese , Eletroforese/métodos , Condutividade Elétrica , Separação Celular , Previsões
6.
J Clin Med ; 11(18)2022 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-36142938

RESUMO

Intravenous cannulation is experientially traumatic to children. To minimize this, EMLA® is applied on the would-be-cannulated area before IV cannula insertion. However, the time to achieve its maximum efficacy may be affected due to incomplete cutaneous absorption and the duration of application. The latter may be a limiting factor in a busy healthcare facility. The usage of dissolvable maltose microneedles may circumvent this problem by introducing micropores that will facilitate EMLA® absorption. A randomized phase II cross-over trial will be conducted to compare the Visual Analogue Scale (VAS) pain scores and skin conductance algesimeter index between 4 different interventions (1 fingertip unit (FTU) of EMLA® with microneedle patch for 30 min before cannulation; 0.5 FTU of EMLA® with microneedle patch for 30 min; 1 FTU of EMLA® with microneedle for 15 min; 1 FTU of EMLA® with sham patch for 30 min). A total of 26 pediatric patients with thalassemia aged between 6 and 18 years old and requiring blood transfusion will be recruited in this trial. During the visits, the VAS scores and skin conductance algesimeter index at venous cannulation will be obtained using the VAS rulers and PainMonitor™ machine, respectively. The trial will commence in August 2021 and is anticipated to end by August 2022.

7.
Micromachines (Basel) ; 13(8)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36014230

RESUMO

Research relating to dielectrophoresis (DEP) has been progressing rapidly through time as it is a strong and controllable technique for manipulation, separation, preconcentration, and partitioning of protein. Extensive studies have been carried out on protein DEP, especially on Bovine Serum Albumin (BSA). However, these studies involve the usage of dye and fluorescent probes to observe DEP responses as the physical properties of protein albumin molecular structure are translucent. The use of dye and the fluorescent probe could later affect the protein's physiology. In this article, we review three methods of electrical quantification of DEP responses: electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and capacitance measurement for protein BSA DEP manipulation. The correlation of these methods with DEP responses is further discussed. Based on the observations on capacitance measurement, it can be deduced that the electrical quantifying method is reliable for identifying DEP responses. Further, the possibility of manipulating the protein and electrically quantifying DEP responses while retaining the original physiology of the protein and without the usage of dye or fluorescent probe is discussed.

8.
Electrophoresis ; 43(4): 609-620, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34859896

RESUMO

This article describes a dielectrophoresis (DEP)-based simulation and experimental study of human epidermal keratinocyte (HEK) cells for wounded skin cell migration toward rapid epithelialization. MyDEP is a standalone software designed specifically to study dielectric particles and cell response to an alternating current (AC) electric field. This method demonstrated that negative dielectrophoresis (NDEP ) occurs in HEK cells at a wide frequency range in highly conductive medium. The finite element method was used to characterize particle trajectory based on DEP and drag force. The performance of the system was assessed using HEK cells in a highly conductive EpiLife suspending medium. The DEP experiment was performed by applying sinusoidal wave AC potential at the peak-to-peak voltage of 10 V in a tapered aluminum microelectrode array from 100 kHz to 1 MHz. We experimentally observed the occurrence of NDEP, which attracted HEK cells toward the local electric field minima in the region of interest. The DIPP-MotionV software was used to track cell migration in the prerecorded video via an automatic marker and estimate the average speed and acceleration of the cells. The results showed that HEK cell migration was accomplished approximately at 6.43 µm/s at 100 kHz with 10 V, and FDEP caused the cells to migrate and align at the target position, which resulted in faster wound closures because of the application of an electric field frequency to HEK cells in random locations.


Assuntos
Queratinócitos , Reepitelização , Movimento Celular , Eletroforese/métodos , Humanos , Microeletrodos
9.
Polymers (Basel) ; 13(21)2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34771347

RESUMO

Electrical stimulation (ES) is an attractive field among clinicians in the topic of wound healing, which is common yet complicated and requires multidisciplinary approaches. The conventional dressing and skin graft showed no promise on complete wound closure. These urge the need for the exploration of electrical stimulation to supplement current wound care management. This review aims to provide an overview of electrical stimulation in wound healing. The mechanism of galvanotaxis related to wound repair will be reviewed at the cellular and molecular levels. Meanwhile, different modalities of externally applied electricity mimicking a physiologic electric field will be discussed and compared in vitro, in vivo, and clinically. With the emerging of tissue engineering and regenerative medicine, the integration of electroconductive biomaterials into modern miniaturised dressing is of interest and has become possible with the advancing understanding of smart biomaterials.

10.
Electrophoresis ; 42(20): 2033-2059, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34346062

RESUMO

Dielectrophoresis (DEP) is a technique to manipulate trajectories of polarisable particles in nonuniform electric fields by utilizing unique dielectric properties. The manipulation of a cell using DEP has been demonstrated in various modes, thereby indicating potential applications in the biomedical field. In this review, recent DEP applications in the biomedical field are discussed. This review is intended to highlight research work that shows significant approach related to DEP application in biomedical field reported between 2016 and 2020. First, single-shell model and multiple-shell model of cells are introduced. Current device structures and recently introduced electrode patterns for DEP applications are discussed. Second, the biomedical uses of DEP in liquid biopsies, stem cell-based therapies, and diagnosis of infectious diseases due to bacteria and viruses are presented. Finally, the challenges in DEP research are discussed, and the reported solutions are explained. DEP's potential research directions are mentioned.


Assuntos
Tecnologia Biomédica , Eletroforese , Eletrodos , Previsões
11.
Sensors (Basel) ; 21(15)2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34372193

RESUMO

We present the integration of a flow focusing microfluidic device in a dielectrophoretic application that based on a tapered aluminum microelectrode array (TAMA). The characterization and optimization method of microfluidic geometry performs the hydrodynamic flow focusing on the channel. The sample fluids are hydrodynamically focused into the region of interest (ROI) where the dielectrophoresis force (FDEP) is dominant. The device geometry is designed using 3D CAD software and fabricated using the micro-milling process combined with soft lithography using PDMS. The flow simulation is achieved using COMSOL Multiphysics 5.5 to study the effect of the flow rate ratio between the sample fluids (Q1) and the sheath fluids (Q2) toward the width of flow focusing. Five different flow rate ratios (Q1/Q2) are recorded in this experiment, which are 0.2, 0.4, 0.6, 0.8 and 1.0. The width of flow focusing is increased linearly with the flow rate ratio (Q1/Q2) for both the simulation and the experiment. At the highest flow rate ratio (Q1/Q2 = 1), the width of flow focusing is obtained at 638.66 µm and at the lowest flow rate ratio (Q1/Q2 = 0.2), the width of flow focusing is obtained at 226.03 µm. As a result, the flow focusing effect is able to reduce the dispersion of the particles in the microelectrode from 2000 µm to 226.03 µm toward the ROI. The significance of flow focusing on the separation of particles is studied using 10 and 1 µm polystyrene beads by applying a non-uniform electrical field to the TAMA at 10 VPP, 150 kHz. Ultimately, we are able to manipulate the trajectories of two different types of particles in the channel. For further validation, the focusing of 3.2 µm polystyrene beads within the dominant FDEP results in an enhanced manipulation efficiency from 20% to 80% in the ROI.


Assuntos
Técnicas Analíticas Microfluídicas , Alumínio , Eletroforese , Microeletrodos , Microfluídica
12.
Sensors (Basel) ; 21(9)2021 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-33922993

RESUMO

Diabetes patients are at risk of having chronic wounds, which would take months to years to resolve naturally. Chronic wounds can be countered using the electrical stimulation technique (EST) by dielectrophoresis (DEP), which is label-free, highly sensitive, and selective for particle trajectory. In this study, we focus on the validation of polystyrene particles of 3.2 and 4.8 µm to predict the behavior of keratinocytes to estimate their crossover frequency (fXO) using the DEP force (FDEP) for particle manipulation. MyDEP is a piece of java-based stand-alone software used to consider the dielectric particle response to AC electric fields and analyzes the electrical properties of biological cells. The prototypic 3.2 and 4.8 µm polystyrene particles have fXO values from MyDEP of 425.02 and 275.37 kHz, respectively. Fibroblast cells were also subjected to numerical analysis because the interaction of keratinocytes and fibroblast cells is essential for wound healing. Consequently, the predicted fXO from the MyDEP plot for keratinocyte and fibroblast cells are 510.53 and 28.10 MHz, respectively. The finite element method (FEM) is utilized to compute the electric field intensity and particle trajectory based on DEP and drag forces. Moreover, the particle trajectories are quantified in a high and low conductive medium. To justify the simulation, further DEP experiments are carried out by applying a non-uniform electric field to a mixture of different sizes of polystyrene particles and keratinocyte cells, and these results are well agreed. The alive keratinocyte cells exhibit NDEP force in a highly conductive medium from 100 kHz to 25 MHz. 2D/3D motion analysis software (DIPP-MotionV) can also perform image analysis of keratinocyte cells and evaluate the average speed, acceleration, and trajectory position. The resultant NDEP force can align the keratinocyte cells in the wound site upon suitable applied frequency. Thus, MyDEP estimates the Clausius-Mossotti factors (CMF), FEM computes the cell trajectory, and the experimental results of prototypic polystyrene particles are well correlated and provide an optimistic response towards keratinocyte cells for rapid wound healing applications.


Assuntos
Queratinócitos , Poliestirenos , Simulação por Computador , Eletroforese , Humanos , Cicatrização
13.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340481

RESUMO

We employed dielectrophoresis to a yeast cell suspension containing amyloid-beta proteins (Aß) in a microfluidic environment. The Aß was separated from the cells and characterized using the gradual dissolution of Aß as a function of the applied dielectrophoretic parameters. We established the gradual dissolution of Aß under specific dielectrophoretic parameters. Further, Aß in the fibril form at the tip of the electrode dissolved at high frequency. This was perhaps due to the conductivity of the suspending medium changing according to the frequency, which resulted in a higher temperature at the tips of the electrodes, and consequently in the breakdown of the hydrogen bonds. However, those shaped as spheroidal monomers experienced a delay in the Aß fibril transformation process. Yeast cells exposed to relatively low temperatures at the base of the electrode did not experience a positive or negative change in viability. The DEP microfluidic platform incorporating the integrated microtip electrode array was able to selectively manipulate the yeast cells and dissolve the Aß to a controlled extent. We demonstrate suitable dielectrophoretic parameters to induce such manipulation, which is highly relevant for Aß-related colloidal microfluidic research and could be applied to Alzheimer's research in the future.


Assuntos
Peptídeos beta-Amiloides/isolamento & purificação , Eletroforese/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Saccharomyces cerevisiae/química , Eletrodos , Eletroforese/instrumentação , Liofilização , Ligação de Hidrogênio , Cinética , Saccharomyces cerevisiae/citologia , Solubilidade , Temperatura
14.
Biosensors (Basel) ; 9(1)2019 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-30813614

RESUMO

Discussing the topic of the capability of dielectrophoresis (DEP) devices in terms of the selective detection and rapid manipulation of particles based on the DEP force (FDEP) via contactless methods is challenging in medical research, drug discovery and delivery. Nonetheless, the process of the selective detection and rapid manipulation of particles via contactless DEP based on dielectric particles and the surrounding medium can reduce the effects of major issues, including physical contact with the particles and medium contamination to overcome operational difficulties. In this review, DEP microelectromechanical system (MEMS) microelectrodes with a tapered profile for the selective detection and rapid manipulation of particles were studied and compared with those of conventional designs with a straight-cut profile. The main objective of this manuscript is to review the versatile mechanism of tapered DEP MEMS microelectrodes for the purpose of selective detection and rapid manipulation. Thus, this review provides a versatile filtration mechanism with the potential for a glomerular-based membrane in an artificial kidneys' development solution for implementing engineered particles and cells by lateral attraction as well as vertical repulsion in the development of lab-on-a-chip applications. For tapered DEP MEMS microelectrodes, the scope of this study methodology involved the characterisation of DEP, modelling of the polarisation factor and the dynamic dielectric changes between the particles and medium. Comprehensive discussions are presented on the capability of tapered DEP microelectrodes to drive the selected particles and the simulation, fabrication and testing of the tapered profile. This study revealed an outstanding performance with the capability of producing two regions of high electric field intensity at the bottom and top edges of the side wall of tapered microelectrodes. Observations on particle separation mainly by the lateral attraction force of particles with positive DEP on the y-axis and vertical repulsion force of particles with negative DEP on the z-axis proved an efficient and uniform FDEP produced by tapered electrodes. In conclusion, this study confirmed the reliability and efficiency of the tapered DEP microelectrodes in the process of selective detection and rapid manipulation at a higher efficiency rate than straight-cut microelectrodes, which is significant in DEP technology applications.


Assuntos
Técnicas Biossensoriais/tendências , Eletroforese/tendências , Dispositivos Lab-On-A-Chip/tendências , Sistemas Microeletromecânicos/métodos , Pesquisa Biomédica , Técnicas Biossensoriais/métodos , Sistemas de Liberação de Medicamentos/tendências , Descoberta de Drogas/tendências , Humanos , Técnicas Analíticas Microfluídicas/tendências
15.
Sensors (Basel) ; 15(5): 10973-90, 2015 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-25970255

RESUMO

In this work, the dielectrophoretic force (F(DEP)) response of Aluminium Microelectrode Arrays with tapered profile is investigated through experimental measurements and numerical simulations. A standard CMOS processing technique with a step for the formation of a tapered profile resist is implemented in the fabrication of Tapered Aluminium Microelectrode Arrays (TAMA). The F(DEP) is investigated through analysis of the Clausius-Mossotti factor (CMF) and cross-over frequency (f(xo)). The performance of TAMA with various side wall angles is compared to that of microelectrodes with a straight cut sidewall profile over a wide range of frequencies through FEM numerical simulations. Additionally, electric field measurement (EFM) is performed through scanning probe microscopy (SPM) in order to obtain the region of force focus in both platforms. Results showed that the tapered profile microelectrodes with angles between 60° and 70° produce the highest electric field gradient on the particles. Also, the region of the strongest electric field in TAMA is located at the bottom and top edge of microelectrode while the strongest electric field in microelectrodes with straight cut profile is found at the top corner of the microelectrode. The latter property of microelectrodes improves the probability of capturing/repelling the particles at the microelectrode's side wall.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...