Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biometeorol ; 67(3): 423-437, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36719482

RESUMO

Leptospirosis is a zoonosis that has been linked to hydrometeorological variability. Hydrometeorological averages and extremes have been used before as drivers in the statistical prediction of disease. However, their importance and predictive capacity are still little known. In this study, the use of a random forest classifier was explored to analyze the relative importance of hydrometeorological indices in developing the leptospirosis model and to evaluate the performance of models based on the type of indices used, using case data from three districts in Kelantan, Malaysia, that experience annual monsoonal rainfall and flooding. First, hydrometeorological data including rainfall, streamflow, water level, relative humidity, and temperature were transformed into 164 weekly average and extreme indices in accordance with the Expert Team on Climate Change Detection and Indices (ETCCDI). Then, weekly case occurrences were classified into binary classes "high" and "low" based on an average threshold. Seventeen models based on "average," "extreme," and "mixed" indices were trained by optimizing the feature subsets based on the model computed mean decrease Gini (MDG) scores. The variable importance was assessed through cross-correlation analysis and the MDG score. The average and extreme models showed similar prediction accuracy ranges (61.5-76.1% and 72.3-77.0%) while the mixed models showed an improvement (71.7-82.6% prediction accuracy). An extreme model was the most sensitive while an average model was the most specific. The time lag associated with the driving indices agreed with the seasonality of the monsoon. The rainfall variable (extreme) was the most important in classifying the leptospirosis occurrence while streamflow was the least important despite showing higher correlations with leptospirosis.


Assuntos
Condução de Veículo , Leptospirose , Humanos , Algoritmo Florestas Aleatórias , Leptospirose/epidemiologia , Temperatura , Estações do Ano
2.
Nature ; 608(7921): 80-86, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35922501

RESUMO

Risk management has reduced vulnerability to floods and droughts globally1,2, yet their impacts are still increasing3. An improved understanding of the causes of changing impacts is therefore needed, but has been hampered by a lack of empirical data4,5. On the basis of a global dataset of 45 pairs of events that occurred within the same area, we show that risk management generally reduces the impacts of floods and droughts but faces difficulties in reducing the impacts of unprecedented events of a magnitude not previously experienced. If the second event was much more hazardous than the first, its impact was almost always higher. This is because management was not designed to deal with such extreme events: for example, they exceeded the design levels of levees and reservoirs. In two success stories, the impact of the second, more hazardous, event was lower, as a result of improved risk management governance and high investment in integrated management. The observed difficulty of managing unprecedented events is alarming, given that more extreme hydrological events are projected owing to climate change3.


Assuntos
Secas , Clima Extremo , Inundações , Gestão de Riscos , Mudança Climática/estatística & dados numéricos , Conjuntos de Dados como Assunto , Secas/prevenção & controle , Secas/estatística & dados numéricos , Inundações/prevenção & controle , Inundações/estatística & dados numéricos , Humanos , Hidrologia , Internacionalidade , Gestão de Riscos/métodos , Gestão de Riscos/estatística & dados numéricos , Gestão de Riscos/tendências
3.
Sci Total Environ ; 838(Pt 2): 155968, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35584753

RESUMO

High-altitude wetlands of the Central Andes, locally known as bofedales, provide important ecosystem services, particularly carbon storage, forage provisioning, and water regulation. Local communities have artificially expanded bofedales by irrigating surrounding grasslands to maximise areas for alpaca grazing. Despite their importance, biophysical processes of both natural and artificial bofedales are still poorly studied, which hinders the development of adequate management and conservation strategies. We analyse and compare the vegetation composition, hydrological variables, groundwater chemistry, and soil characteristics of a natural and an artificial bofedal of at least 10 years old in southern Peru, to understand their interrelations and the consequences for ecosystem service provisioning. We do not find statistically significant differences in the soil, water, and vegetation characteristics. Soil organic carbon (SOC) content, which we use as a proxy for carbon storage, is negatively correlated to dissolved oxygen, pH, and soil water temperature. In addition, Non-Metric Multidimensional Scaling analysis shows a positive relation between plant community composition, SOC content, and water electric conductivity. Our results suggest a three-way interaction between hydrological, soil, and vegetation characteristics in the natural bofedal, which also holds for the artificial bofedal. Vegetation cover of two of the most highly nutritious species for alpaca, Lachemilla diplophylla and Lilaeopsis macloviana with 19-22% of crude protein, are weakly or not correlated to environmental variables, suggesting grazing might be obscuring these potential relationships. Given the high economic importance of alpaca breeding for local communities, expanding bofedales artificially appears an effective strategy to enhance their ecosystem services with minimal impact on the ecohydrological properties of bofedales.


Assuntos
Ecossistema , Áreas Alagadas , Carbono/metabolismo , Melhoramento Vegetal , Solo/química , Água
4.
PLoS One ; 17(5): e0265167, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35617289

RESUMO

The consumption of packaged water in Ghana has grown significantly in recent years. By 2017, "sachet water"-machine-sealed 500ml plastic bags of drinking water-was consumed by 33% of Ghanaian households. Reliance on sachet water has previously been associated with the urban poor, yet recent evidence suggests a customer base which crosses socioeconomic lines. Here, we conduct a repeated cross-sectional analysis of three nationally representative datasets to examine the changing demography of sachet water consumers between 2010 and 2017. Our results show that over the course of the study period sachet water has become a ubiquitous source of drinking water in Ghana, with relatively wealthy households notably increasing their consumption. In 2017, the majority of sachet water drinking households had access to another improved water source. The current rate and form of urbanisation, inadequate water governance, and an emphasis on cost recovery pose significant challenges for the expansion of the piped water supply network, leading us to conclude that sachet water will likely continue to be a prominent source of drinking water in Ghana for the foreseeable future. The main challenge for policymakers is to ensure that the growing sachet water market enhances rather than undermines Ghana's efforts towards achieving universal and equitable access to clean drinking water and sanitation.


Assuntos
Água Potável , Estudos Transversais , Gana , Análise Espaço-Temporal , Abastecimento de Água
5.
Water Resour Res ; 57(6): e2020WR029024, 2021 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38130829

RESUMO

The exposure of urban populations to flooding is highly heterogeneous, with the negative impacts of flooding experienced disproportionately by the poor. In developing countries experiencing rapid urbanization and population growth a key distinction in the urban landscape is between planned development and unplanned, informal development, which often occurs on marginal, flood-prone land. Flood risk management in the context of informality is challenging, and may exacerbate existing social inequalities and entrench poverty. Here, we adapt an existing socio-hydrological model of human-flood interactions to account for a stratified urban society consisting of planned and informal settlements. In the first instance, we use the model to construct four system archetypes based on idealized scenarios of risk reduction and disaster recovery. We then perform a sensitivity analysis to examine the relative importance of the differential values of vulnerability, risk-aversion, and flood awareness in determining the relationship between flood risk management and social inequality. The model results suggest that reducing the vulnerability of informal communities to flooding plays an important role in reducing social inequality and enabling sustainable economic growth, even when the exposure to the flood hazard remains high. Conversely, our model shows that increasing risk aversion may accelerate the decline of informal communities by suppressing economic growth. On this basis, we argue for urban flood risk management which is rooted in pro-poor urban governance and planning agendas which recognize the legitimacy and permanence of informal communities in cities.

6.
Environ Sci Technol ; 54(15): 9145-9158, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32628837

RESUMO

In this paper, we critically review the current state-of-the-art for sensor network applications and approaches that have developed in response to the recent rise of low-cost technologies. We specifically focus on water-related low-cost sensor networks, and conceptualize them as socio-technical systems that can address resource management challenges and opportunities at three scales of resolution: (1) technologies, (2) users and scenarios, and (3) society and communities. Building this argument, first we identify a general structure for building low-cost sensor networks by assembling technical components across configuration levels. Second, we identify four application categories, namely operational monitoring, scientific research, system optimization, and community development, each of which has different technical and nontechnical configurations that determine how, where, by whom, and for what purpose low-cost sensor networks are used. Third, we discuss the governance factors (e.g., stakeholders and users, networks sustainability and maintenance, application scenarios, and integrated design) and emerging technical opportunities that we argue need to be considered to maximize the added value and long-term societal impact of the next generation of sensor network applications. We conclude that consideration of the full range of socio-technical issues is essential to realize the full potential of sensor network technologies for society and the environment.


Assuntos
Água , Coleta de Dados
7.
BMJ Glob Health ; 4(4): e001723, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31543996

RESUMO

A recent symposium and workshop in Khartoum, the capital of the Republic of Sudan, brought together broad expertise from three universities to address the current burden of communicable and non-communicable diseases facing the Sudanese healthcare system. These meetings identified common challenges that impact the burden of diseases in the country, most notably gaps in data and infrastructure which are essential to inform and deliver effective interventions. Non-communicable diseases, including obesity, type 2 diabetes, renal disease and cancer are increasing dramatically, contributing to multimorbidity. At the same time, progress against communicable diseases has been slow, and the burden of chronic and endemic infections remains considerable, with parasitic diseases (such as malaria, leishmaniasis and schistosomiasis) causing substantial morbidity and mortality. Antimicrobial resistance has become a major threat throughout the healthcare system, with an emerging impact on maternal, neonatal and paediatric populations. Meanwhile, malnutrition, micronutrient deficiency and poor perinatal outcomes remain common and contribute to a lifelong burden of disease. These challenges echo the United Nations (UN) sustainable development goals and concentrating on them in a unified strategy will be necessary to address the national burden of disease. At a time when the country is going through societal and political transition, we draw focus on the country and the need for resolution of its healthcare needs.

8.
Sci Data ; 5: 180159, 2018 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-30106391

RESUMO

In recent decades India has undergone substantial land use/land cover change as a result of population growth and economic development. Historical land use/land cover maps are necessary to quantify the impact of change at global and regional scales, improve predictions about the quantity and location of future change and support planning decisions. Here, a regional land use change model driven by district-level inventory data is used to generate an annual time series of high-resolution gridded land use/land cover maps for the Indian subcontinent between 1960-2010. The allocation procedure is based on statistical analysis of the relationship between contemporary land use/land cover and various spatially explicit covariates. A comparison of the simulated map for 1985 against remotely-sensed land use/land cover maps for 1985 and 2005 reveals considerable discrepancy between the simulated and remote sensing maps, much of which arises due to differences in the amount of land use/land cover change between the inventory data and the remote sensing maps.

9.
Sci Data ; 5: 180080, 2018 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-29969116

RESUMO

This article presents a hydrometeorological dataset from a network of paired instrumented catchments, obtained by participatory monitoring through a partnership of academic and non-governmental institutions. The network consists of 28 headwater catchments (<20 km2) covering three major biomes in 9 locations of the tropical Andes. The data consist of precipitation event records at 0.254 mm resolution or finer, water level and streamflow time series at 5 min intervals, data aggregations at hourly and daily scale, a set of hydrological indices derived from the daily time series, and catchment physiographic descriptors. The catchment network is designed to characterise the impacts of land-use and watershed interventions on the catchment hydrological response, with each catchment representing a typical land use and land cover practice within its location. As such, it aims to support evidence-based decision making on land management, in particular evaluating the effectiveness of catchment interventions, for which hydrometeorological data scarcity is a major bottleneck. The data will also be useful for broader research on Andean ecosystems, and their hydrology and meteorology.

10.
PLoS One ; 8(5): e63634, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23667651

RESUMO

Observations and projections for mountain regions show a strong tendency towards upslope displacement of their biomes under future climate conditions. Because of their climatic and topographic heterogeneity, a more complex response is expected for biodiversity hotspots such as tropical mountain regions. This study analyzes potential changes in the distribution of biomes in the Tropical Andes and identifies target areas for conservation. Biome distribution models were developed using logistic regressions. These models were then coupled to an ensemble of 8 global climate models to project future distribution of the Andean biomes and their uncertainties. We analysed projected changes in extent and elevational range and identified regions most prone to change. Our results show a heterogeneous response to climate change. Although the wetter biomes exhibit an upslope displacement of both the upper and the lower boundaries as expected, most dry biomes tend to show downslope expansion. Despite important losses being projected for several biomes, projections suggest that between 74.8% and 83.1% of the current total Tropical Andes will remain stable, depending on the emission scenario and time horizon. Between 3.3% and 7.6% of the study area is projected to change, mostly towards an increase in vertical structure. For the remaining area (13.1%-17.4%), there is no agreement between model projections. These results challenge the common believe that climate change will lead to an upslope displacement of biome boundaries in mountain regions. Instead, our models project diverging responses, including downslope expansion and large areas projected to remain stable. Lastly, a significant part of the area expected to change is already affected by land use changes, which has important implications for management. This, and the inclusion of a comprehensive uncertainty analysis, will help to inform conservation strategies in the Tropical Andes, and to guide similar assessments for other tropical mountains.


Assuntos
Ecossistema , Clima Tropical , Altitude , Biodiversidade , Mudança Climática , Modelos Teóricos , Reprodutibilidade dos Testes , América do Sul
11.
Environ Sci Technol ; 46(4): 1971-6, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22260091

RESUMO

Data availability in environmental sciences is growing rapidly. Conventional monitoring systems are collecting data at increasing spatial and temporal resolutions; satellites provide a constant stream of global observations, and citizen scientist generate local data with electronic gadgets and cheap devices. There is a need to process this stream of heterogeneous data into useful information, both for science and for decision-making. Advances in networking and computer technologies increasingly enable accessing, combining, processing, and visualizing these data. This Feature reflects upon the role of environmental models in this process. We consider models as the primary tool for data processing, pattern identification, and scenario analysis. As such, they are an essential element of science-based decision-making. The new technologies analyzed here have the potential to turn the typical top-down flow of information from scientists to users into a much more direct, interactive approach. This may accelerate the dissemination of environmental information to a larger community of users. It may also facilitate harvesting feedback, and evaluating simulations and predictions from different perspectives. However, the evolution poses challenges, not only to model development but also to the communication of model results and their assumptions, shortcomings, and errors.


Assuntos
Tomada de Decisões , Ecologia , Internet , Modelos Teóricos , Simulação por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...