Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carcinogenesis ; 44(6): 511-524, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37195263

RESUMO

Xeroderma pigmentosum variant (XP-V) is an autosomal recessive disease with an increased risk of developing cutaneous neoplasms in sunlight-exposed regions. These cells are deficient in the translesion synthesis (TLS) DNA polymerase eta, responsible for bypassing different types of DNA lesions. From the exome sequencing of 11 skin tumors of a genetic XP-V patients' cluster, classical mutational signatures related to sunlight exposure, such as C>T transitions targeted to pyrimidine dimers, were identified. However, basal cell carcinomas also showed distinct C>A mutation spectra reflecting a mutational signature possibly related to sunlight-induced oxidative stress. Moreover, four samples carry different mutational signatures, with C>A mutations associated with tobacco chewing or smoking usage. Thus, XP-V patients should be warned of the risk of these habits. Surprisingly, higher levels of retrotransposon somatic insertions were also detected when the tumors were compared with non-XP skin tumors, revealing other possible causes for XP-V tumors and novel functions for the TLS polymerase eta in suppressing retrotransposition. Finally, the expected high mutation burden found in most of these tumors renders these XP patients good candidates for checkpoint blockade immunotherapy.


Assuntos
Neoplasias Cutâneas , Xeroderma Pigmentoso , Humanos , Xeroderma Pigmentoso/genética , Retroelementos/genética , Mutação , Reparo do DNA , Neoplasias Cutâneas/genética , Raios Ultravioleta/efeitos adversos
2.
Cell Physiol Biochem ; 54(6): 1199-1217, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33252886

RESUMO

BACKGROUND/AIMS: Obesity is a risk factor associated with cardiometabolic complications. Recently, we reported that miRNA-22 deletion attenuated high-fat diet-induced adiposity and prevented dyslipidemia without affecting cardiac hypertrophy in male mice. In this study, we examined the impact of miRNA-22 in obesogenic diet-induced cardiovascular and metabolic disorders in females. METHODS: Wild type (WT) and miRNA-22 knockout (miRNA-22 KO) females were fed a control or an obesogenic diet. Body weight gain, adiposity, glucose tolerance, insulin tolerance, and plasma levels of total cholesterol and triglycerides were measured. Cardiac and white adipose tissue remodeling was assessed by histological analyses. Echocardiography was used to evaluate cardiac function and morphology. RNA-sequencing analysis was employed to characterize mRNA expression profiles in female hearts. RESULTS: Loss of miRNA-22 attenuated body weight gain, adiposity, and prevented obesogenic diet-induced insulin resistance and dyslipidemia in females. WT obese females developed cardiac hypertrophy. Interestingly, miRNA-22 KO females displayed cardiac hypertrophy without left ventricular dysfunction and myocardial fibrosis. Both miRNA-22 deletion and obesogenic diet changed mRNA expression profiles in female hearts. Enrichment analysis revealed that genes associated with regulation of the force of heart contraction, protein folding and fatty acid oxidation were enriched in hearts of WT obese females. In addition, genes related to thyroid hormone responses, heart growth and PI3K signaling were enriched in hearts of miRNA-22 KO females. Interestingly, miRNA-22 KO obese females exhibited reduced mRNA levels of Yap1, Egfr and Tgfbr1 compared to their respective controls. CONCLUSION: This study reveals that miRNA-22 deletion induces cardiac hypertrophy in females without affecting myocardial function. In addition, our findings suggest miRNA-22 as a potential therapeutic target to treat obesity-related metabolic disorders in females.


Assuntos
Cardiomegalia , Dieta Hiperlipídica/efeitos adversos , Deleção de Genes , Doenças Metabólicas , MicroRNAs/genética , Miocárdio , Obesidade , Animais , Cardiomegalia/induzido quimicamente , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Feminino , Doenças Metabólicas/induzido quimicamente , Doenças Metabólicas/genética , Doenças Metabólicas/metabolismo , Doenças Metabólicas/patologia , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Miocárdio/metabolismo , Miocárdio/patologia , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia
3.
Clin Epigenetics ; 7: 57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26052355

RESUMO

BACKGROUND: Tumour metastasis to the brain is a common and deadly development in certain cancers; 18-30 % of breast tumours metastasise to the brain. The contribution that gene silencing through epigenetic mechanisms plays in these metastatic tumours is not well understood. RESULTS: We have carried out a bioinformatic screen of genome-wide breast tumour methylation data available at The Cancer Genome Atlas (TCGA) and a broad literature review to identify candidate genes that may contribute to breast to brain metastasis (BBM). This analysis identified 82 candidates. We investigated the methylation status of these genes using Combined Bisulfite and Restriction Analysis (CoBRA) and identified 21 genes frequently methylated in BBM. We have identified three genes, GALNT9, CCDC8 and BNC1, that were frequently methylated (55, 73 and 71 %, respectively) and silenced in BBM and infrequently methylated in primary breast tumours. CCDC8 was commonly methylated in brain metastases and their associated primary tumours whereas GALNT9 and BNC1 were methylated and silenced only in brain metastases, but not in the associated primary breast tumours from individual patients. This suggests differing roles for these genes in the evolution of metastatic tumours; CCDC8 methylation occurs at an early stage of metastatic evolution whereas methylation of GANLT9 and BNC1 occurs at a later stage of tumour evolution. Knockdown of these genes by RNAi resulted in a significant increase in the migratory and invasive potential of breast cancer cell lines. CONCLUSIONS: These findings indicate that GALNT9 (an initiator of O-glycosylation), CCDC8 (a regulator of microtubule dynamics) and BNC1 (a transcription factor with a broad range of targets) may play a role in the progression of primary breast tumours to brain metastases. These genes may be useful as prognostic markers and their products may provide novel therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...