Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Turk J Gastroenterol ; 31(10): 706-712, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33169708

RESUMO

BACKGROUND/AIMS: Astaxanthin (ATX) is a naturally occurring carotenoid and a potent antioxidant. Various anti-inflammatory effects of ATX have been examined. We aimed to investigate the protective effect of ATX and its mechanism in a cerulein-induced acute pancreatitis rat model. MATERIALS AND METHODS: The rats were randomized into 2 main groups as control (C) and acute pancreatitis group (AP). AP group was subsequently divided into subgroups as AP+vehicle (AP), AP+ATX, and ATX+peroxisome proliferator-activated receptor-alpha antagonist GW6471 (ATX+GW) groups. To induce AP, the rats were administered cerulein (50 µg/kg, intraperitonally [ip]) at 1 hour intervals, whereas the C group received saline. The AP group was treated with vehicle olive oil, ATX 40 mg/kg/orally, or GW6471 and ATX (GW1 mg/kg/ip; ATX; 40 mg/kg/peroral). Treatments were administered after the 1st cerulein injection. At the 7th hour after the final injection, the rats were killed and the pancreatic tissue was used for the determination of malondialdehyde (MDA), glutathione (GSH), and myeloperoxidase (MPO) activities and luminol-lucigenin chemiluminescence levels. Serum amylase, lipase, and histopathological analyses were performed. RESULTS: Elevated serum lipase and amylase levels in the vehicle-treated AP group (p<0.01) decreased in the ATX and ATX+GW groups (p<0.05). In the AP groups, GSH was reduced and MDA, MPO, luminol, and lucigenin levels were increased (p<0.05-0.001). ATX reversed these changes (p<0.05-0.001). The vehicle-treated group revealed significant severe cytoplasmic degeneration and vacuolization, whereas ATX ameliorated these destructions. GW6471 did not abolish the positive effects of ATX biochemically or histologically. CONCLUSION: ATX has a potent protective effect on AP via its radical scavenging and antioxidant properties. Therefore, we believe that ATX may have therapeutic potential.


Assuntos
Antioxidantes/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Pancreatite/tratamento farmacológico , Doença Aguda , Animais , Ceruletídeo , Modelos Animais de Doenças , Pâncreas/metabolismo , Pancreatite/induzido quimicamente , Ratos , Xantofilas/farmacologia
2.
Food Funct ; 8(2): 741-745, 2017 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-28106207

RESUMO

Low-calorie sweeteners are considered to be beneficial in calorie control, but the impact of these sweeteners on gastric emptying is not well described. The purpose of this study was to compare the gastric emptying rate of agave nectar with those of glucose and fructose, and to evaluate the interaction of cholecystokinin (CCK)-1, CCK-2 and glucagon-like peptide-1 (GLP-1) receptors in agave-induced alterations in gastric emptying. Female Sprague-Dawley rats were fitted with gastric cannulas. Following the recovery, the gastric emptying rates of glucose, fructose and agave at 12.5%, 15% or 50% concentrations were measured and compared with that of saline. GLP-1 receptor antagonist exendin fragment 9-39 (30 µg kg-1), CCK-1 receptor antagonist devazepide (1 mg kg-1) or gastrin/CCK-2 receptor antagonist YM022 (1 mg kg-1) was injected subcutaneously 1 min before the emptying of glucose, fructose or agave at their 50% concentrations. When compared with saline emptying, gastric emptying of glucose was significantly delayed at its 25% and 50% concentrations, but the emptying of 12.5% glucose was not different from that of saline. Agave emptying, which was delayed with respect to saline emptying, was not altered by CCK-1 receptor blockade; but agave emptied from the stomach as rapidly as saline following the blockade of either CCK-2 or GLP-1 receptors. The findings demonstrate that the inhibitory effect of agave on gastric emptying is mediated by both CCK-2 and GLP-1 receptors, suggesting that natural sweeteners including agave may have satiating effects through the inhibition of gastric motility via enteroendocrine mechanisms.


Assuntos
Agave/metabolismo , Colecistocinina/metabolismo , Esvaziamento Gástrico , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Extratos Vegetais/metabolismo , Estômago/fisiologia , Edulcorantes/metabolismo , Agave/química , Animais , Feminino , Frutose/metabolismo , Glucose/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...