Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Phys Lett ; 117(4)2020.
Artigo em Inglês | MEDLINE | ID: mdl-33154594

RESUMO

We report on the impact of nonlinear four-magnon scattering on magnon transport in microstructured Co25Fe75 waveguides with low magnetic damping. We determine the magnon propagation length with microfocused Brillouin light scattering over a broad range of excitation powers and detect a decrease of the attenuation length at high powers. This is consistent with the onset of nonlinear four-magnon scattering. Hence, it is critical to stay in the linear regime, when deriving damping parameters from the magnon propagation length. Otherwise, the intrinsic nonlinearity of magnetization dynamics may lead to a misinterpretation of magnon propagation lengths and, thus, to incorrect values of the magnetic damping of the system.

2.
Appl Phys Lett ; 115(12)2019.
Artigo em Inglês | MEDLINE | ID: mdl-33149347

RESUMO

We report ultralow intrinsic magnetic damping in Co25Fe75 heterostructures, reaching the low 10-4 regime at room temperature. By using a broadband ferromagnetic resonance technique in out-of-plane geometry, we extracted the dynamic magnetic properties of several Co25Fe75-based heterostructures with varying ferromagnetic layer thicknesses. By measuring radiative damping and spin pumping effects, we found the intrinsic damping of a 26 nm thick sample to be α 0 ≲ 3.18 × 10-4. Furthermore, using Brillouin light scattering microscopy, we measured spin-wave propagation lengths of up to (21 ± 1) µm in a 26 nm thick Co25Fe75 heterostructure at room temperature, which is in excellent agreement with the measured damping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA