Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(15): 24194-24202, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37475252

RESUMO

Magneto-optical imaging of quantized magnetic flux tubes in superconductors - Abrikosov vortices - is based on Faraday rotation of light polarization within a magneto-optical indicator placed on top of the superconductor. Due to severe aberrations induced by the thick indicator substrate, the spatial resolution of vortices is usually well beyond the optical diffraction limit. Using a high refractive index solid immersion lens placed onto the indicator garnet substrate, we demonstrate wide field optical imaging of single flux quanta in a Niobium film with a resolution better than 600 nm and sub-second acquisition periods, paving the way to high-precision and fast vortex manipulation. Vectorial field simulations are also performed to reproduce and optimize the experimental features of vortex images.

2.
Sci Adv ; 4(7): eaat1061, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-30027117

RESUMO

The interplay between superconductivity and magnetism is one of the oldest enigmas in physics. Usually, the strong exchange field of ferromagnet suppresses singlet superconductivity via the paramagnetic effect. In EuFe2(As0.79P0.21)2, a material that becomes not only superconducting at 24.2 K but also ferromagnetic below 19 K, the coexistence of the two antagonistic phenomena becomes possible because of the unusually weak exchange field produced by the Eu subsystem. We demonstrate experimentally and theoretically that when the ferromagnetism adds to superconductivity, the Meissner state becomes spontaneously inhomogeneous, characterized by a nanometer-scale striped domain structure. At yet lower temperature and without any externally applied magnetic field, the system locally generates quantum vortex-antivortex pairs and undergoes a phase transition into a domain vortex-antivortex state characterized by much larger domains and peculiar Turing-like patterns. We develop a quantitative theory of this phenomenon and put forth a new way to realize superconducting superlattices and control the vortex motion in ferromagnetic superconductors by tuning magnetic domains-unprecedented opportunity to consider for advanced superconducting hybrids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...