Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(5)2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36903230

RESUMO

The optimal mode for ultrasonic welding (USW) of the "PEEK-ED (PEEK)-prepreg (PEI impregnated CF fabric)-ED (PEEK)-PEEK" lap joint was determined by artificial neural network (ANN) simulation, based on the sample of the experimental data expanded with the expert data set. The experimental verification of the simulation results showed that mode 10 (t = 900 ms, P = 1.7 atm, τ = 2000 ms) ensured the high strength properties and preservation of the structural integrity of the carbon fiber fabric (CFF). Additionally, it showed that the "PEEK-CFF prepreg-PEEK" USW lap joint could be fabricated by the "multi-spot" USW method with the optimal mode 10, which can resist the load per cycle of 50 MPa (the bottom HCF level). The USW mode, determined by ANN simulation for the neat PEEK adherends, did not provide joining both particulate and laminated composite adherends with the CFF prepreg reinforcement. The USW lap joints could be formed when the USW durations (t) were significantly increased up to 1200 and 1600 ms, respectively. In this case, the elastic energy is transferred more efficiently to the welding zone through the upper adherend.

2.
Materials (Basel) ; 15(19)2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36234280

RESUMO

The aim of this study is to substantiate the use machine learning methods to optimize a combination of ultrasonic welding (USW) parameters for manufacturing of multilayer lap joints consisting of two outer PEEK layers, a middle prepreg of unidirectional carbon fibers (CFs), and two energy directors (EDs) between them. As a result, a mathematical problem associated with determining the optimal combination of technological parameters was formulated for the formation of USW joints possessing improved functional properties. In addition, a methodology was proposed to analyze the mechanical properties of USW joints based on neural network simulation (NNS). Experiments were performed, and threshold values of the optimality conditions for the USW parameters were chosen. Accordingly, NNS was carried out to determine the parameter ranges, showing that the developed optimality condition was insufficient and required correction, taking into account other significant structural characteristics of the formed USW joints. The NNS study enabled specification of an extra area of USW parameters that were not previously considered optimal when designing the experiment. The NNS-predicted USW mode (P = 1.5 atm, t = 800 ms, and τ = 1500 ms) ensured formation of a lap joint with the required mechanical and structural properties (σUTS = 80.5 MPa, ε = 4.2 mm, A = 273 N·m, and Δh = 0.30 mm).

3.
Molecules ; 27(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234914

RESUMO

High-strength PI and PEI polymers differ by chemical structure and flexibility of the polymer chains that ensure lower cost and higher manufacturability of the latter. The choice of a particular polymer matrix is of actuality at design of antifriction composites on their basis. In this study, a comparative analysis of tribological behavior of PI and PEI- based composites was carried out with linear contact rubbing. The neat materials, as well as the two- and three-component composites reinforced with chopped carbon fibers, were investigated. The third components were typically used, but were different in nature (polymeric and crystalline) being solid lubricant fillers (PTFE, graphite and MoS2) with characteristic dimensions of several microns. The variable parameters were both load and sliding speed, as well as the counterface material. It was shown that an improvement of the tribological properties could be achieved by the tribological layer formation, which protected their wear track surfaces from the cutting and plowing effects of asperities on the surfaces of the metal and ceramic counterparts. The tribological layers were not formed in both neat polymers, while disperse hardening by fractured CF was responsible for the tribological layer formation in both two- and three component PI- and PEI-based composites. The effect of polymer matrix in tribological behavior was mostly evident in two-component composites (PI/CF, PEI/CF) over the entire P⋅V product range, while extra loading with Gr and MoS2 leveled the regularities of tribological layer formation, as well as the time variation in friction coefficients.

4.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015792

RESUMO

(1) Background: this study deals with design of an automated laboratory facility based on a servo-hydraulic testing machine for estimating parameters of mechanical hysteresis loops by means of the digital image correlation (DIC) method. (2) Methods: the paper presents a description of the testing facility, describes the grounds for calculating the elastic modulus, the offset yield strength (OYS) and the parameters of the mechanical hysteresis loops by the DIC method. (3) Results: the developed hardware-software facility was tested by studying the fatigue process in neat polyimide (PI) under various amplitude tension-tension loadings. It was found that the damage accumulation was accompanied by the decrease in the loop areas, while failure occurred when it reduced by at least ~5 kJ/m3. (4) Conclusions: it was shown that lowering the loop area along with changing the secant modulus value makes it possible to estimate the level of the scattered damage accumulation (mainly at the stresses above the OYS level). It was revealed that fractography data, namely the pattern and sizes of the fatigue crack initiation and propagation zones, did not correlate well with the dependences of the parameters of the hysteresis loops.

5.
Polymers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34451375

RESUMO

The structure, mechanical and tribological properties of the polyimide-based composites reinforced with chopped carbon fibers (CCF) and loaded with solid-lubricant commercially available fillers of various natures were investigated. The metal- and ceramic counterparts were employed for tribological testing. Micron sized powders of PTFE, colloidal graphite and molybdenum disulfide were used for solid lubrication. It was shown that elastic modulus was enhanced by up to 2.5 times, while ultimate tensile strength was increased by up 1.5 times. The scheme and tribological loading conditions exerted the great effect on wear resistance of the composites. In the tribological tests by the 'pin-on-disk' scheme, wear rate decreased down to ~290 times for the metal-polymer tribological contact and to ~285 times for the ceramic-polymer one (compared to those for neat PI). In the tribological tests against the rougher counterpart (Ra~0.2 µm, the 'block-on-ring' scheme) three-component composites with both graphite and MoS2 exhibited high wear resistance. Under the "block-on-ring" scheme, the possibility of the transfer film formation was minimized, since the large-area counterpart slid against the 'non-renewable' surface of the polymer composite (at a 'shortage' of solid lubricant particles). On the other hand, graphite and MoS2 particles served as reinforcing inclusions. Finally, numerical simulation of the tribological test according to the 'block-on-ring' scheme was carried out. Within the framework of the implemented model, the counterpart roughness level exerted the significantly greater effect on wear rate in contrast to the porosity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA