Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108724, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38226163

RESUMO

Circulating cell-free mitochondrial DNA (ccf-mtDNA) acts as a damage-associated molecular pattern molecule and may be cargo within extracellular vesicles (EVs). ccf-mtDNA and select mitochondrial DNA (mtDNA) haplogroups are associated with cardiovascular disease. We hypothesized that ccf-mtDNA and plasma EV mtDNA would be associated with hypertension, sex, self-identified race, and mtDNA haplogroup ancestry. Participants were normotensive (n = 107) and hypertensive (n = 108) African American and White adults from the Healthy Aging in Neighborhoods of Diversity across the Life Span study. ccf-mtDNA levels were higher in African American participants compared with White participants in both plasma and EVs, but ccf-mtDNA levels were not related to hypertension. EV mtDNA levels were highest in African American participants with African mtDNA haplogroup. Circulating inflammatory protein levels were altered with mtDNA haplogroup, race, and EV mtDNA. Our findings highlight that race is a social construct and that ancestry is crucial when examining health and biomarker differences between groups.

2.
Immun Ageing ; 20(1): 6, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36710345

RESUMO

BACKGROUND: Frailty, a clinical syndrome commencing at midlife, is a risk for morbidity and mortality. Little is known about the factors that contribute to the chronic inflammatory state associated with frailty. Extracellular vesicles (EVs) are small, membrane-bound vesicles that are released into the circulation and are mediators of intercellular communication. We examined whether mitochondrial DNA (mtDNA) and inflammatory proteins in EVs may act as damage-associated molecular pattern (DAMP) molecules in frailty. RESULTS: To address whether EVs and their associated mtDNA and inflammatory protein cargo are altered with frailty, EVs were isolated from non-frail (n = 90) and frail (n = 87) middle-aged (45-55 years) participants from the Healthy Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study. EV concentration was highest in frail White participants. EV mtDNA levels were significantly higher in frail individuals compared to non-frail individuals. The presence of six inflammatory proteins in EVs (FGF-21, HGF, IL-12B, PD-L1, PRDX3, and STAMBP) were significantly associated with frailty. EV inflammatory proteins were significantly altered by frailty status, race, sex, and poverty status. Notably, frail White participants had higher levels of EV-associated CD5, CD8A, CD244, CXCL1, CXCL6, CXCL11, LAP-TGF-beta-1 and MCP-4 compared to frail and non-frail African American participants. Frail White participants living below poverty had higher levels of EV-associated uPA. EV-associated CCL28 levels were highest in non-frail women and CXCL1 were highest in non-frail men. Men living below poverty had higher levels of CD5, CD8A, CXCL1, LAP-TGF-beta-1, and uPA. CXCL6 levels were significantly higher in individuals living above poverty. There was a significant correlation between EV mtDNA levels and the presence of inflammatory proteins. CONCLUSIONS: These data suggest that mtDNA within EVs may act as a DAMP molecule in frailty. Its association with chemokines and other inflammatory EV cargo proteins, may contribute to the frailty phenotype. In addition, the social determinant of health, poverty, influences the inflammatory cargo of EVs in midlife.

3.
Theranostics ; 12(9): 4459-4476, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35673574

RESUMO

Recent attention has focused on the use of extracellular vesicles (EVs) as biological indicators of health and disease. These small, nano-sized membrane bound vesicles are secreted from cells into the extracellular space and can be readily isolated from bodily fluids. EVs can carry various bioactive molecules as cargo including DNA, RNA, proteins, and lipids. These EVs can provide a snapshot of the cell of origin and a window of opportunity to assess normal physiological states as well as pathophysiological states. For EVs to further develop as potential biomarkers of disease, it is important to characterize whether these vesicles and their associated cargo are altered in the context of demographic factors. Here, we summarize the current literature on how demographics such as age, race, and sex affect the levels and cargo of EVs. Age and sex influence both EV cargo and concentration while race studies report differences mostly in EV protein cargo. This review also identifies areas of future research and important considerations for the clinical use of EVs as biomarkers.


Assuntos
Vesículas Extracelulares , Biomarcadores/metabolismo , Comunicação Celular , Vesículas Extracelulares/metabolismo , Proteínas/metabolismo
5.
Sci Rep ; 12(1): 972, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046472

RESUMO

Extracellular vesicles (EVs) released from non-small cell lung cancer (NSCLC) cells are known to promote cancer progression. However, it remains unclear how EVs from various NSCLC cells differ in their secretion profile and their ability to promote phenotypic changes in non-tumorigenic cells. Here, we performed a comparative analysis of EV release from non-tumorigenic cells (HBEC/BEAS-2B) and several NSCLC cell lines (A549, H460, H358, SKMES, and Calu6) and evaluated the potential impact of NSCLC EVs, including EV-encapsulated RNA (EV-RNA), in driving invasion and epithelial barrier impairment in HBEC/BEAS-2B cells. Secretion analysis revealed that cancer cells vary in their secretion level, with some cell lines having relatively low secretion rates. Differential uptake of NSCLC EVs was also observed, with uptake of A549 and SKMES EVs being the highest. Phenotypically, EVs derived from Calu6 and H358 cells significantly enhanced invasion, disrupted an epithelial barrier, and increased barrier permeability through downregulation of E-cadherin and ZO-1. EV-RNA was a key contributing factor in mediating these phenotypes. More nuanced analysis suggests a potential correlation between the aggressiveness of NSCLC subtypes and the ability of their respective EVs to induce cancerous phenotypes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Transformação Celular Neoplásica , Células Epiteliais/metabolismo , Vesículas Extracelulares/metabolismo , Neoplasias Pulmonares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular , Humanos , Neoplasias Pulmonares/patologia , Invasividade Neoplásica , Mucosa Respiratória/metabolismo , Mucosa Respiratória/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...