Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Drug Target ; 28(5): 547-563, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31814456

RESUMO

Pyrrole derivatives (PDs) chloro-1-(4-chlorobenzyl)-4-((3-(trifluoromethyl)phenyl)amino)-1H-pyrrole-2,5-dione (MI-1) and 5-amino-4-(1,3-benzothyazol-2-yn)-1-(3-methoxyphenyl)-1,2-dihydro-3H-pyrrole-3-one (D1) were synthesised as inhibitors of several protein kinases including EGFR and VEGFR. The aim of the study was to reveal the exact mechanisms of PDs' action EGFR and VEGFR are involved in. We observed, that both PDs could bind with EGFR and VEGFR and form stable complexes. PDs entered into electrostatic interactions with polar groups of phospholipid heads in cell membrane, and the power of interaction depended on the nature of PD radical substituents (greater for MI-1 and smaller for D1). Partial intercalation of MI-1 into the membrane hydrophobic zone also occurred. PDs concentrations induced apoptosis in malignant cells but normal ones had different sensitivity to those. MI-1 and D1 acted like antioxidants in inflamed colonic tissue, as evidenced by reduce of lipid and protein peroxidation products (by 43-67%) and increase of superoxide dismutase activity (by 40 and 58%) with restoring these values to control ones. MI-1 restored reduced haemoglobin and normalised elevated platelets and monocytes in settings of colorectal cancer, whereas D1 normalised only platelets. Thus, MI-1 and D1 could be used as competitive inhibitors of EGFR and VEGFR and antioxidants, which might contribute to realisation of their anti-inflammatory, proapoptotic and antitumor activity.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Pirróis/farmacologia , Animais , Antioxidantes/farmacologia , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Receptores ErbB/metabolismo , Hemoglobinas/metabolismo , Humanos , Masculino , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Neoplasias/metabolismo , Ratos , Ratos Wistar , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Superóxido Dismutase/metabolismo
2.
In Silico Pharmacol ; 7(1): 2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31032168

RESUMO

4-Amino-3-chloro-1H-pyrrole-2,5-dione derivatives were designed and synthesized as potential tyrosine kinase inhibitors. One of them has been shown to inhibit growth of cancer cell lines and in vivo tumors. To determine the impact of side groups on biological activity the ability of different 4-amino-3-chloro-1H-pyrrole-2,5-diones to interact with ATP-binding domains of growth factor receptors and with model cell membranes were aimed to be discovered. The methods of molecular docking, short-molecular dynamics (in silico) and non-steady cyclic current-voltage characteristics (in vitro) were used. Five 4-amino-3-chloro-1H-pyrrole-2,5-diones were synthesized from 3,4-dichloro-1H-pyrrole-2,5-diones. All of them demonstrated the potential ability to form complexes with ATP-binding domains of EGFR and VEGFR2. These complexes were more stable compared to those with ANP. 4-Amino-3-chloro-1H-pyrrole-2,5-diones while interact with different bilayer lipid membranes caused an increase of their specific conductance and electric capacity, demonstrating the certain disturbance in lipid packing. Obtained data allowed us to suggest that proposed chemicals can interact with the surface of lipid bilayer, do likely intercalate into the membrane and form stable complexes with EGFR and VEGFR2. So, the prospect of developed chemicals to be effective EGFR and VEGFR2 inhibitors and therefore realize antitumor activity was concluded.

3.
J Biosci Bioeng ; 115(6): 674-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23428334

RESUMO

The aim of the present work is the investigation of the interactions of single-walled and multi-walled carbon nanotubes (further referred as SWCNTs and MWCNTs, respectively) with bimolecular lipid model membrane (BLM) and cellular plasma membrane (PM). The findings demonstrate that both SWCNTs and MWCNTs (in concentration range of 10⁻4 to 10⁻¹ mg ml⁻¹) are capable to penetrate through the region of hydrophobic fatty acid residues of phospholipids and to form molecular associates in the bilayer that have conductive properties of molecular pores type. The formed pores were shown to enable phosphatidylserine externalization from inner to outer PM leaflet. Both types of CNTs increase the specific conductivity and decrease the specific capacity of BLM.


Assuntos
Membrana Celular/química , Lipídeos de Membrana/química , Nanotubos de Carbono/química , Células HeLa , Humanos , Nanotubos de Carbono/ultraestrutura , Fosfatidilserinas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA