Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(8): 085001, 2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38457729

RESUMO

We demonstrate a silicon-based electron accelerator that uses laser optical near fields to both accelerate and confine electrons over extended distances. Two dielectric laser accelerator (DLA) designs were tested, each consisting of two arrays of silicon pillars pumped symmetrically by pulse front tilted laser beams, designed for average acceleration gradients 35 and 50 MeV/m, respectively. The DLAs are designed to act as alternating phase focusing (APF) lattices, where electrons, depending on the electron-laser interaction phase, will alternate between opposing longitudinal and transverse focusing and defocusing forces. By incorporating fractional period drift sections that alter the synchronous phase between ±60° off crest, electrons captured in the designed acceleration bucket experience half the peak gradient as average gradient while also experiencing strong confinement forces that enable long interaction lengths. We demonstrate APF accelerators with interaction lengths up to 708 µm and energy gains up to 23.7±1.07 keV FWHM, a 25% increase from starting energy, demonstrating the ability to achieve substantial energy gains with subrelativistic DLA.

2.
Phys Rev Lett ; 127(16): 164802, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34723609

RESUMO

Compressing electron pulses is important in many applications of electron beam systems. In this study, we propose to use optical beat notes to compress electron pulses. The beat frequency is chosen to match the initial electron pulse duration, which enables the compression of electron pulses with a wide range of durations. This functionality extends the optical control of electron beams, which is important in compact electron beam systems such as dielectric laser accelerators. We also find that the dominant frequency of the electron charge density changes continuously along its drift trajectory, which may open up new opportunities in coherent interaction between free electrons and quantum or classical systems.

3.
Opt Express ; 28(8): 12475-12486, 2020 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-32403744

RESUMO

The unique properties of gallium oxide (GaOx) have drawn increasing interest as a material suitable for high-power electronic and optical applications. Herein, we report the demonstration of low-loss GaOx-core/SiO2-cladding waveguides on Si substrate. We present the fabrication process and annealing treatments of the waveguide devices, and we characterize the corresponding effects on optical transmission for 3 common wavelengths: 633 nm, 1064 nm, and 1550 nm. The best propagation loss achieved for these wavelengths is measured to be -0.4±0.1dB/cm, -0.3±0.2dB/cm, and -2.4±0.5dB/cm, respectively. We discuss the major waveguide loss mechanisms, followed by results of pump and probe experiments using visible/IR wavelengths for waveguides treated under various post-fabrication annealing conditions. We also show nonlinear measurements for a 250 fs laser beam to offer additional insights into the loss mechanisms, which are consistent with the linear optical transmission performances. High waveguide laser-induced damage threshold (LIDT) of >2.5J/cm2 is measured at this pulse width, making GaOx a potential candidate for high-power integrated photonic devices.

4.
Science ; 367(6473): 79-83, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896715

RESUMO

Particle accelerators represent an indispensable tool in science and industry. However, the size and cost of conventional radio-frequency accelerators limit the utility and reach of this technology. Dielectric laser accelerators (DLAs) provide a compact and cost-effective solution to this problem by driving accelerator nanostructures with visible or near-infrared pulsed lasers, resulting in a 104 reduction of scale. Current implementations of DLAs rely on free-space lasers directly incident on the accelerating structures, limiting the scalability and integrability of this technology. We present an experimental demonstration of a waveguide-integrated DLA that was designed using a photonic inverse-design approach. By comparing the measured electron energy spectra with particle-tracking simulations, we infer a maximum energy gain of 0.915 kilo-electron volts over 30 micrometers, corresponding to an acceleration gradient of 30.5 mega-electron volts per meter. On-chip acceleration provides the possibility for a completely integrated mega-electron volt-scale DLA.

5.
Sci Adv ; 5(5): eaau0823, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31139743

RESUMO

Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here, we benchmark two types of annealing machines-a quantum annealer built by D-Wave Systems and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillators-on two problem classes, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on cubic graphs. On denser problems, however, we observe an exponential penalty for the quantum annealer [exp(-αDW N 2)] relative to CIMs [exp(-αCIM N)] for fixed anneal times, both on the SK model and on 50% edge density MAX-CUT. This leads to a several orders of magnitude time-to-solution difference for instances with over 50 vertices. An optimal-annealing time analysis is also consistent with a substantial projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the fully-connected CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers.

6.
Phys Rev Lett ; 122(10): 104801, 2019 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-30932681

RESUMO

We demonstrate a laser-driven, tunable electron lens fabricated in monolithic silicon. The lens consists of an array of silicon pillars pumped symmetrically by two 300 fs, 1.95 µm wavelength, nJ-class laser pulses from an optical parametric amplifier. The optical near field of the pillar structure focuses electrons in the plane perpendicular to the pillar axes. With 100±10 MV/m incident laser fields, the lens focal length is measured to be 50±4 µm, which corresponds to an equivalent quadrupole focusing gradient B^{'} of 1.4±0.1 MT/m. By varying the incident laser field strength, the lens can be tuned from a 21±2 µm focal length (B^{'}>3.3 MT/m) to focal lengths on the centimeter scale.

7.
Opt Lett ; 44(2): 335-338, 2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30644894

RESUMO

We study the weakly guided silicon nitride waveguide as an on-chip power delivery solution for dielectric laser accelerators (DLAs). We focus on the two main limiting factors on the waveguide network for DLAs: the optical damage and nonlinear characteristics. The typical delivered fluence at the onset of optical damage is measured to be ∼0.19 J/cm2 at a 2 µm central wavelength and 250 fs pulse width. This damage fluence is lower than that of the bulk Si3N4 (∼0.65 J/cm2), but higher than that of bulk silicon (∼0.17 J/cm2). We also report the nonlinearity-induced spectrum and phase variance of the output pulse at this pulse duration. We find that a total waveguide length within 3 mm is sufficient to avoid significant self-phase modulation effects when operating slightly below the damage threshold. We also estimate that one SiNx waveguide can power 70 µm silicon dual pillar DLAs from a single side, based on the results from the recent free-space DLA experiment.

8.
Phys Rev Lett ; 123(26): 264802, 2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31951436

RESUMO

Net acceleration of attosecond-scale electron pulses is critical to the development of on-chip accelerators. We demonstrate a silicon-based laser-driven two-stage accelerator as an injector stage prototype for a Dielectric Laser Accelerator (DLA). The first stage converts a 57-keV (500±100)-fs (FWHM) electron pulse into a pulse train of 700±200 as (FWHM) microbunches. The second stage harnesses the tunability of dual-drive DLA to perform both a net acceleration and a streaking measurement. In the acceleration mode, the second stage increases the net energy of the electron pulse by 200 eV over 12.25 µm. In the deflection mode, the microbunch temporal profile is analyzed by a direct streaking measurement with 200 as resolution. This work provides a demonstration of a novel, on-chip method to access the attosecond regime, opening new paths towards attosecond science using DLA.

9.
Opt Express ; 26(18): 22801-22815, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-30184935

RESUMO

We propose a dielectric laser accelerator design based on a tapered slot waveguide structure for sub-relativistic electron acceleration. This tapering scheme allows for straightforward tuning of the phase velocity of the accelerating field along the propagation direction, which is necessary for maintaining synchronization with electrons as their velocities increase. Furthermore, the non-resonant nature of this design allows for better tolerance to experimental errors. We also introduce a method to design this continuously tapered structure based on the eikonal approximation, and give a working example based on realistic experimental parameters.

10.
Opt Express ; 26(8): 9963-9971, 2018 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-29715941

RESUMO

We report a broadband mid-infrared frequency comb with three-optical-cycle pulse duration centered around 4.2 µm, via half-harmonic generation using orientation-patterned GaP (OP-GaP) with ~43% conversion efficiency. We experimentally compare performance of GaP with GaAs and lithium niobate as the nonlinear element, and show how properties of GaP at this wavelength lead to generation of the shortest pulses and the highest conversion efficiency. These results shed new light on half-harmonic generation of frequency combs, and pave the way for generation of short-pulse intrinsically-locked frequency combs at longer wavelengths in the mid-infrared with high conversion efficiencies.

11.
Opt Lett ; 43(9): 2181-2184, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714784

RESUMO

We present the demonstration of phase-dependent laser acceleration and deflection of electrons using a symmetrically driven silicon dual pillar grating structure. We show that exciting an evanescent inverse Smith-Purcell mode on each side of a dual pillar grating can produce hyperbolic cosine acceleration and hyperbolic sine deflection modes, depending on the relative excitation phase of each side. Our devices accelerate sub-relativistic 99.0 keV kinetic energy electrons by 3.0 keV over a 15 µm distance with accelerating gradients of 200 MeV/m with 40 nJ, 300 fs, 1940 nm pulses from an optical parametric amplifier. These results represent a significant step towards making practical dielectric laser accelerators for ultrafast, medical, and high-energy applications.

12.
Phys Rev Lett ; 120(5): 053904, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29481183

RESUMO

We report the first demonstration of a regime of operation in optical parametric oscillators (OPOs), in which the formation of temporal simultons produces stable femtosecond half-harmonic pulses. Simultons are simultaneous bright-dark solitons of a signal field at frequency ω and the pump field at 2ω, which form in a quadratic nonlinear medium. The formation of simultons in an OPO is due to the interplay of nonlinear pulse acceleration with the timing mismatch between the pump repetition period and the cold-cavity round-trip time and is evidenced by sech^{2} spectra with broad instantaneous bandwidths when the resonator is detuned to a slightly longer round-trip time than the pump repetition period. We provide a theoretical description of an OPO operating in a regime dominated by these dynamics, observe the distinct features of simulton formation in an experiment, and verify our results with numerical simulations. These results represent a new regime of operation in nonlinear resonators, which can lead to efficient and scalable sources of few-cycle frequency combs at arbitrary wavelengths.

13.
Appl Opt ; 56(8): 2226-2229, 2017 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-28375306

RESUMO

We present a simple autocorrelator for ultraviolet pulses based on two-photon conductivity in a bench-top fabricatable sapphire sensor. We perform measurements on femtosecond 226-278 nm ultraviolet pulses from the third and fourth harmonics of a standard 76 MHz titanium sapphire oscillator and picosecond 266 nm pulses from the fourth harmonic of a 1064 nm 50 MHz neodymium vanadate oscillator. Our device is sensitive to 2.6 pJ ultraviolet pulses with peak powers below 20 W. These results represent the lowest measured autocorrelation peak powers by over one order of magnitude for a system with no reference pulse in the deep ultraviolet (<300 nm). The autocorrelator can potentially support UV pulse lengths from 50 fs-10s of picoseconds.

14.
Science ; 354(6312): 614-617, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811274

RESUMO

Unconventional, special-purpose machines may aid in accelerating the solution of some of the hardest problems in computing, such as large-scale combinatorial optimizations, by exploiting different operating mechanisms than those of standard digital computers. We present a scalable optical processor with electronic feedback that can be realized at large scale with room-temperature technology. Our prototype machine is able to find exact solutions of, or sample good approximate solutions to, a variety of hard instances of Ising problems with up to 100 spins and 10,000 spin-spin connections.

15.
Opt Lett ; 41(15): 3435-8, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472587

RESUMO

We demonstrate an experimental technique for both transverse and longitudinal characterization of bunched femtosecond free electron beams. The operation principle is based on monitoring of the current of electrons that obtained an energy gain during the interaction with the synchronized optical near-field wave excited by femtosecond laser pulses. The synchronous accelerating/decelerating fields confined to the surface of a silicon nanostructure are characterized using a highly focused sub-relativistic electron beam. Here the transverse spatial resolution of 450 nm and femtosecond temporal resolution of 480 fs (sub-optical-cycle temporal regime is briefly discussed) achievable by this technique are demonstrated.

16.
Opt Lett ; 41(12): 2696-9, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-27304266

RESUMO

Acceleration of electrons using laser-driven dielectric microstructures is a promising technology for the miniaturization of particle accelerators. Achieving the desired GV m-1 accelerating gradients is possible only with laser pulse durations shorter than ∼1 ps. In this Letter, we present, to the best of our knowledge, the first demonstration of acceleration of relativistic electrons at a dielectric microstructure driven by femtosecond duration laser pulses. Using this technique, an electron accelerating gradient of 690±100 MV m-1 was measured-a record for dielectric laser accelerators.

17.
Opt Lett ; 40(18): 4344-7, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371932

RESUMO

We present the demonstration of high-gradient laser acceleration and deflection of electrons with silicon dual-pillar grating structures using both evanescent inverse Smith-Purcell modes and coupled modes. Our devices accelerate subrelativistic 86.5 and 96.3 keV electrons by 2.05 keV over 5.6 µm distance for accelerating gradients of 370 MeV/m with a 3 nJ mode-locked Ti:sapphire laser. We also show that dual pillars can produce uniform accelerating gradients with a coupled-mode field profile. These results represent a significant step toward making practical dielectric laser accelerators for ultrafast, medical, and high-energy applications.

18.
Opt Lett ; 40(18): 4368-71, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26371938

RESUMO

We demonstrate a femtosecond fiber-feedback optical parametric oscillator (OPO) at degeneracy. The OPO cavity comprises an 80-cm-long fiber composed of a combination of normal and anomalous dispersion sections that provide a net intracavity group delay dispersion close to zero. By using a mode-locked, Yb-doped fiber laser as the pump, we achieved half-harmonic generation of 250-MHz, 1.2-nJ nearly transform-limited 97-fs pulses centered at 2090 nm with a total conversion efficiency of 36%.

19.
Opt Lett ; 39(16): 4747-50, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121864

RESUMO

We report the fabrication and first demonstration of an electron beam position monitor for a dielectric microaccelerator. This device is fabricated on a fused silica substrate using standard optical lithography techniques and uses the radiated optical wavelength to measure the electron beam position with a resolution of 10 µm, or 7% of the electron beam spot size. This device also measures the electron beam spot size in one dimension.

20.
Opt Lett ; 39(4): 900-3, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24562236

RESUMO

We demonstrate a mid-IR frequency comb centered at 3120 nm with 650-nm (20-THz) bandwidth at a comb-teeth spacing of 500 MHz. The generated comb is based on a compact ring-type synchronously pumped optical parametric oscillator (SPOPO) operating at degeneracy and pumped by a mode-locked Er-doped 1560 nm fiber laser at a repetition rate of 100 MHz. We achieve high-repetition rate by using a fractional-length cavity with a roundtrip length of 60 cm, which is one-fifth of the length dictated by conventional synchronous pumping.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...