Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 17047, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39048633

RESUMO

Museum genomics provide an opportunity to investigate population demographics of extinct species, especially valuable when research prior to extinction was minimal. The Bachman's warbler (Vermivora bachmanii) is hypothesized to have gone extinct due to loss of its specialized habitat. However, little is known about other potential contributing factors such as natural rarity or changes to connectivity following habitat fragmentation. We examined mitochondrial DNA (mtDNA) and genome-wide SNPs using specimens collected from breeding and migration sites across the range of the Bachman's warbler. We found no signals of strong population structuring across the breeding range of Bachman's warblers in both mtDNA and genome-wide SNPs. Thus, long-term population isolation did not appear to be a significant contributor to the extinction of the Bachman's warbler. Instead, our findings support the theory that Bachman's warblers underwent a rapid decline likely driven by habitat destruction, which may have been exacerbated by the natural rarity, habitat specificity and low genetic diversity of the species.


Assuntos
DNA Mitocondrial , Extinção Biológica , Genômica , Museus , Polimorfismo de Nucleotídeo Único , Animais , Genômica/métodos , DNA Mitocondrial/genética , Aves Canoras/genética , Ecossistema , Variação Genética , América do Norte , Genética Populacional
2.
Integr Comp Biol ; 62(6): 1838-1848, 2022 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-35781565

RESUMO

Connectivity among wildlife populations facilitates exchange of genetic material between groups. Changes to historical connectivity patterns resulting from anthropogenic activities can therefore have negative consequences for genetic diversity, particularly for small or isolated populations. DNA obtained from museum specimens can enable direct comparison of temporal changes in connectivity among populations, which can aid in conservation planning and contribute to the understanding of population declines. However, museum DNA can be degraded and only available in low quantities, rendering it challenging for use in population genomic analyses. Applications of genomic methodologies such as targeted sequencing address this issue by enabling capture of shared variable sites, increasing quantity and quality of recovered genomic information. We used targeted sequencing of ultra-conserved Elements (UCEs) to evaluate potential changes in connectivity and genetic diversity of roseate terns (Sterna dougallii) with a breeding distribution in the northwestern Atlantic and the Caribbean. Both populations experienced range contractions and population declines due to anthropogenic activity in the 20th century, which has the potential to alter historical connectivity regimes. Instead, we found that the two populations were differentiated historically as well as contemporaneously, with little evidence of migration between them for either time period. We also found no evidence for temporal changes in genetic diversity, although these interpretations may have been limited due to sequencing artifacts caused by the degraded nature of the museum samples. Population structuring in migratory seabirds is typically reflective of low rates of divergence and high connectivity among geographically segregated subpopulations. Our contrasting results suggest the potential presence of ecological mechanisms driving population differentiation, and highlight the value of targeted sequencing on DNA derived from museum specimens to uncover long-term patterns of genetic differentiation in wildlife populations.


Assuntos
Espécies em Perigo de Extinção , Museus , Animais , Genômica/métodos , DNA/genética , Aves/genética , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA