Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 8(42): 28789-28799, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27701858

RESUMO

A series of encapsulated and nonencapsulated bulk heterojunction photovoltaic devices containing poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl C61 butyric acid methyl ester (PCBM) with different P3HT:PCBM ratios were investigated using traditional steady-state as well as non-steady-state intensity modulated photocurrent spectroscopy (IMPS) techniques. The steady state J-V measurements showed that PCBM content did not have a significant effect on the efficiency for freshly prepared devices, whereas aged nonencapsulated devices exhibited a strong dependence on PCBM content. IMPS measurements showed a significant contribution of interfacial nongeminate recombination in nonencapsulated devices, which increased with decreasing PCBM content in the photoactive layer and cell aging. It was related to the formation of interfacial states at the P3HT/PCBM interface due to atmospheric contamination, which act as recombination centers. Device encapsulation was found to be effective in preventing the occurrence of interfacial recombination. Our results suggest that IMPS can be used as a diagnostic tool to predict the performance of bulk heterojunction organic solar cells. If a solar cell shows the presence of interfacial states as indicated by semicircle arcs in quadrant I of the IMPS complex plane plots, it is most likely that its performance will deteriorate with time due to enhanced interfacial recombination, even without further exposure to atmospheric contaminations. We conclude that interfacial nongeminate recombination is an important degradation mechanism in organic solar cells, especially in the case of exposure to atmospheric contaminants.

2.
Langmuir ; 31(46): 12814-22, 2015 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-26502089

RESUMO

A number of renewable energy systems require an understanding and correlation of material properties and photoelectrochemical activity on the micro to nanoscale. Among these, conducting polymer electrodes continue to be important materials. In this contribution, an ultrasensitive scanning electrochemical cell microscopy (SECCM) platform is used to electrodeposit microscale thin films of poly(3-hexylthiophene) (P3HT) on an optically transparent gold electrode and to correlate the morphology (film thickness and structural order) with photoactivity. The electrochemical growth of P3HT begins with a thin ordered film up to 10 nm thick, after which a second more disordered film is deposited, as revealed by micro-Raman spectroscopy. A decrease in photoactivity for the thicker films, measured in situ immediately following film deposition, is attributed to an increase in bulk film disorder that limits charge transport. Higher resolution ex situ SECCM phototransient measurements, using a smaller diameter probe, show local variations in photoactivity within a given deposit. Even after aging, thinner, more ordered regions within a deposit exhibit sustained enhanced photocurrent densities compared to areas where the film is thicker and more disordered. The platform opens up new possibilities for high-throughput combinatorial correlation studies, by allowing materials fabrication and high spatial resolution probing of processes in photoelectrochemical materials.

3.
Anal Chem ; 87(20): 10450-6, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26398675

RESUMO

Single molecule electrochemical detection (SMED) is an extremely challenging aspect of electroanalytical chemistry, requiring unconventional electrochemical cells and measurements. Here, SMED is reported using a "quad-probe" (four-channel probe) pipet cell, fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barreled pipet and filling the open channels with electrolyte solution, and quasi-reference counter electrodes. A meniscus forms at the end of the probe covering the two working electrodes and is brought into contact with a substrate working electrode surface. In this way, a nanogap cell is produced whereby the two carbon electrodes in the pipet can be used to promote redox cycling of an individual molecule with the substrate. Anticorrelated currents generated at the substrate and tip electrodes, at particular distances (typically tens of nanometers), are consistent with the detection of single molecules. The low background noise realized in this droplet format opens up new opportunities in single molecule electrochemistry, including the use of ionic liquids, as well as aqueous solution, and the quantitative assessment and analysis of factors influencing redox cycling currents, due to a precisely known gap size.

4.
ACS Nano ; 9(9): 8942-52, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26267455

RESUMO

The design, development, and application of high-speed scanning electrochemical probe microscopy is reported. The approach allows the acquisition of a series of high-resolution images (typically 1000 pixels µm(-2)) at rates approaching 4 seconds per frame, while collecting up to 8000 image pixels per second, about 1000 times faster than typical imaging speeds used up to now. The focus is on scanning electrochemical cell microscopy (SECCM), but the principles and practicalities are applicable to many electrochemical imaging methods. The versatility of the high-speed scan concept is demonstrated at a variety of substrates, including imaging the electroactivity of a patterned self-assembled monolayer on gold, visualization of chemical reactions occurring at single wall carbon nanotubes, and probing nanoscale electrocatalysts for water splitting. These studies provide movies of spatial variations of electrochemical fluxes as a function of potential and a platform for the further development of high speed scanning with other electrochemical imaging techniques.

5.
Anal Chem ; 87(8): 4129-33, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25797893

RESUMO

The development of techniques for nanoscale structure-activity correlations is of major importance for the fundamental understanding and rational design of (photo)electrocatalysts. However, the low conversion efficiency of characteristic materials generates tiny photoelectrochemical currents at the submicrometer to nanoscale, in the fA range, which are challenging to detect and measure accurately. Here, we report the coupling of scanning electrochemical cell microscopy (SECCM) with photoillumination, to create a submicrometer spatial resolution cell that opens up high resolution structure-(photo)activity measurements. We demonstrate the capabilities of the technique as a tool for: (i) high spatial resolution (photo)activity mapping using an ionic liquid electrolyte at a thin film of TiO2 aggregates, commonly used as a photoanode in dye sensitized solar cells (DSSCs) and (ii) in situ (photo)activity measurements of an electropolymerized conjugated polymer on a transparent Au substrate in a controlled atmospheric environment. Quantitative data, including localized (photo)electrochemical transients and external quantum efficiency (EQE), are extracted, and prospects for further technique development and enhancement are outlined.


Assuntos
Técnicas Eletroquímicas , Microscopia Eletroquímica de Varredura , Energia Solar , Eletrólitos/química , Ouro/química , Líquidos Iônicos/química , Processos Fotoquímicos , Polímeros/química , Titânio/química
6.
Anal Chem ; 87(7): 3566-73, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25719392

RESUMO

The fabrication and use of a multifunctional electrochemical probe incorporating two independent carbon working electrodes and two electrolyte-filled barrels, equipped with quasi-reference counter electrodes (QRCEs), in the end of a tapered micrometer-scale pipet is described. This "quad-probe" (4-channel probe) was fabricated by depositing carbon pyrolytically into two diagonally opposite barrels of a laser-pulled quartz quadruple-barrelled pipet. After filling the open channels with electrolyte solution, a meniscus forms at the end of the probe and covers the two working electrodes. The two carbon electrodes can be used to drive local electrochemical reactions within the meniscus while a bias between the QRCEs in the electrolyte channels provides an ion conductance signal that is used to control and position the meniscus on a surface of interest. When brought into contact with a surface, localized high resolution amperometric imaging can be achieved with the two carbon working electrodes with a spatial resolution defined by the meniscus contact area. The substrate can be an insulating material or (semi)conductor, but herein, we focus mainly on conducting substrates that can be connected as a third working electrode. Studies using both aqueous and ionic liquid electrolytes in the probe, together with gold and individual single walled carbon nanotube samples, demonstrate the utility of the technique. Substrate generation-dual tip collection measurements are shown to be characterized by high collection efficiencies (approaching 100%). This hybrid configuration of scanning electrochemical microscopy (SECM) and scanning electrochemical cell microscopy (SECCM) should be powerful for future applications in electrode mapping, as well as in studies of insulating materials as demonstrated by transient spot redox-titration measurements at an electrostatically charged Teflon surface and at a pristine calcite surface, where a functionalized probe is used to follow the immediate pH change due to dissolution.


Assuntos
Técnicas Eletroquímicas/instrumentação , Íons/química , Microscopia/instrumentação , Eletrodos , Eletrólitos/química , Desenho de Equipamento , Ouro/química , Concentração de Íons de Hidrogênio , Líquidos Iônicos/química , Nanotubos de Carbono/ultraestrutura
7.
Faraday Discuss ; 172: 439-55, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25427004

RESUMO

The electrochemical (EC) oxidation of the neurotransmitter, serotonin, at individual single-walled carbon nanotubes (SWNTs) is investigated at high resolution using a novel platform that combines flow-aligned SWNTs with atomic force microscopy, Raman microscopy, electronic conductance measurements, individual SWNT electrochemistry and high-resolution scanning electrochemical cell microscopy (SECCM). SECCM has been used to visualise the EC activity along side-wall sections of metallic SWNTs to assess the extent to which side-walls promote the electrochemistry of this complex multi-step process. Uniform and high EC activity is observed that is consistent with significant reaction at the side-wall, rather than electrochemistry being driven by defects alone. By scanning forward and reverse (trace and retrace) over the same region of a SWNT, it is also possible to assess any blocking of EC activity by serotonin oxidation reaction products. At a physiologically relevant concentration (5 µM), there is no detectable blocking of SWNTs, which can be attributed, at least in part, to the high diffusion rate to an individual, isolated SWNT in the SECCM format. At higher serotonin concentration (2 mM), oligomer formation from oxidation products is much more significant and major blocking of the EC process is observed from line profiles recorded as the SECCM meniscus moves over an SWNT. The SECCM line profile morphology is shown to be highly diagnostic of whether blocking occurs during EC processes. The studies herein add to a growing body of evidence that various EC processes at SWNTs, from simple outer sphere redox reactions to complex multi-step processes, occur readily at pristine SWNTs. The platform described is of general applicability to various types of nanostructures and nanowires.


Assuntos
Nanotubos de Carbono/química , Serotonina/química , Técnicas Eletroquímicas , Microscopia/métodos , Oxirredução
8.
J Am Chem Soc ; 136(32): 11252-5, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25061694

RESUMO

There is a prevailing and widely adopted view that carbon nanotubes, which are finding considerable application in energy, healthcare, and electronics applications, are highly (electro)catalytically inert unless modified, doped, or defected. By visualizing the electrochemical reduction of oxygen (hydrogen peroxide generation) at high resolution along pristine (defect-free) regions of individual single-walled carbon nanotubes, we show that there is, in fact, significant activity comparable to that of standard gold electrocatalysts. Moreover, the activity is greatly enhanced at strained (kinked) sites and regions modified by oxidation. Single-walled carbon nanotubes are thus effective electrocatalysts in their own right and not just supports for other materials.

9.
Anal Chem ; 86(7): 3639-46, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24617313

RESUMO

Nanopipets are versatile tools for nanoscience, particularly when used in scanning ion conductance microscopy (SICM) to determine, in a noncontact manner, the topography of a sample. We present a new method, applying an oscillating bias between a quasi-reference counter electrode (QRCE) in the SICM nanopipet probe and a second QRCE in the bulk solution, to generate a feedback signal to control the distance between the end of a nanopipet and a surface. Both the amplitude and phase of the oscillating ion current, induced by the oscillating bias and extracted using a phase-sensitive detector, are shown to be sensitive to the probe-surface distance and are used to provide stable feedback signals. The phase signal is particularly sensitive at high frequencies of the oscillating bias (up to 30 kHz herein). This development eliminates the need to physically oscillate the probe to generate an oscillating ion current feedback signal, as needed for conventional SICM modes. Moreover, bias modulation allows a feedback signal to be generated without any net ion current flow, ensuring that any polarization of the quasi reference counter electrodes, electro-osmotic effects, and perturbations of the supporting electrolyte composition are minimized. Both feedback signals, magnitude and phase, are analyzed through approach curve measurements to different surfaces at a range of distinct frequencies and via impedance measurements at different distances from a surface. The bias modulated response is readily understood via a simple equivalent circuit model. Bias modulated (BM)-SICM is compared to conventional SICM imaging through measurements of substrates with distinct topographical features and yields equivalent results. Finally, BM-SICM with both amplitude and phase feedback is used for topographical imaging of subtle etch features in a calcite crystal surface. The 2 modes yield similar results, but phase-detection opens up the prospect of faster imaging.

10.
ACS Appl Mater Interfaces ; 4(9): 4579-87, 2012 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-22882186

RESUMO

The semiconductor and photovoltaic properties of carbon nitride (CNx) thin films prepared using a reactive magnetron cathodic sputtering technique were investigated both individually and as composites with an organic conjugated polymer, poly(2,2'-bithiophene) (PBT). The CNx films showed an increasing thickness as the deposition power and/or nitrogen content in the gas mixture increase. At low nitrogen content and low deposition power (25-50 W), the film structure was dominated by the abundance of the graphitic sp(2) regions, whereas at higher nitrogen contents and magnetron power CNx films started to demonstrate semiconductor properties, as evidenced by the occurrence of photoconductivity and the development of a space charge region. However, CNx films alone did not show any reproducible photovoltaic properties. The situation changed, however, when CNx was deposited onto conjugated PBT substrates. In this configuration, CNx was found to function as an acceptor material improving the photocurrent generation both in solution and in solid state photovoltaic devices, with the external quantum efficiencies reaching 1% at high nitrogen contents. The occurrence of the donor-acceptor charge transfer was further evidenced by suppression of the n-doping of the PBT polymer by CNx. Nanoscale atomic force microscopy (AFM) and current-sensing AFM data suggested that CNx may form a bulk heterojunction with PBT.


Assuntos
Nitrilas/química , Condutividade Elétrica , Microscopia de Força Atômica , Polímeros/química , Energia Solar , Propriedades de Superfície
11.
ACS Appl Mater Interfaces ; 3(2): 392-401, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21299191

RESUMO

Intensity modulated photocurrent (IMPS) and photovoltage (IMVS) spectroscopies were used to study the mechanism of photoprocesses in P3HT:PCBM bulk heterojunction organic solar cells at various light intensities. The use of the frequency domain techniques allowed us to separate the bulk and interfacial processes and gain a valuable insight into the mechanism of losses in these devices. The results provide direct evidence that interfacial nongeminate recombination is one of the dominant loss and aging mechanisms in bulk heterojunction organic solar cells. The trapping of photoexcited holes in the P3HT phase was found to contribute to the increased recombination rate. The results suggest that promising ways of improving the efficiency of bulk heterojunction solar cells may be reducing the charge trapping both at and near the P3HT:PCBM interface, as well as improving the efficiency of charge extraction at contacts.

12.
J Phys Chem B ; 113(48): 15715-23, 2009 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-19902922

RESUMO

Electrochemical and photoelectrochemical properties were studied of a series of donor-acceptor materials based on polythiophene modified with silole moieties. The materials were prepared by electrochemical anodic polymerization of 2,5-bis([2,2'-bithiophen]-5-yl)-1,1-dimethyl-3,4-diphenylsilole and 2,5-bis([2,2'-terthiophen]-5-yl)-1,1-dimethyl-3,4-diphenylsilole, as well as copolymerization of these monomers with 2,2'-bithiophene. Photocurrent measurements showed that introduction of silole resulted in a considerable enhancement of the photovoltaic properties of silole-containing materials and especially the fill factor. However, as demonstrated by Mott-Schottky measurements, electropolymerized silole-containing materials showed a substantial degree of disorder and high density of states in the midgap, which negatively affected their photovoltaic properties. Atomic force microscopy (AFM) and phase imaging revealed the presence of phase segregation and heterogeneity of the silole-containing materials. Interestingly, introduction of siloles suppressed the cathodic (n-type) doping typical for polythiophenes. This work demonstrates that siloles show great promise as electron-acceptor groups for all-organic solar cells; however, further work is required to optimize the properties and performance of poly(thienylsilole)-based materials.


Assuntos
Compostos de Organossilício/química , Polímeros/química , Silanos/química , Tiofenos/química , Eletroquímica , Estrutura Molecular , Compostos de Organossilício/síntese química , Fotoquímica , Polímeros/síntese química , Tiofenos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...