Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 15: 1381508, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38690272

RESUMO

Seasonal influenza remains a serious global health problem, leading to high mortality rates among the elderly and individuals with comorbidities. Vaccination is generally accepted as the most effective strategy for influenza prevention. While current influenza vaccines are effective, they still have limitations, including narrow specificity for certain serological variants, which may result in a mismatch between vaccine antigens and circulating strains. Additionally, the rapid variability of the virus poses challenges in providing extended protection beyond a single season. Therefore, mRNA technology is particularly promising for influenza prevention, as it enables the rapid development of multivalent vaccines and allows for quick updates of their antigenic composition. mRNA vaccines have already proven successful in preventing COVID-19 by eliciting rapid cellular and humoral immune responses. In this study, we present the development of a trivalent mRNA vaccine candidate, evaluate its immunogenicity using the hemagglutination inhibition assay, ELISA, and assess its efficacy in animals. We demonstrate the higher immunogenicity of the mRNA vaccine candidate compared to the inactivated split influenza vaccine and its enhanced ability to generate a cross-specific humoral immune response. These findings highlight the potential mRNA technology in overcoming current limitations of influenza vaccines and hold promise for ensuring greater efficacy in preventing seasonal influenza outbreaks.


Assuntos
Anticorpos Antivirais , Reações Cruzadas , Imunidade Humoral , Vacinas contra Influenza , Vacinas de mRNA , Vacinas contra Influenza/imunologia , Animais , Vacinas de mRNA/imunologia , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Humanos , Reações Cruzadas/imunologia , Camundongos , Influenza Humana/prevenção & controle , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Feminino , Estações do Ano , Imunogenicidade da Vacina , SARS-CoV-2/imunologia , SARS-CoV-2/genética , Camundongos Endogâmicos BALB C , Vírus da Influenza A Subtipo H1N1/imunologia , COVID-19/prevenção & controle , COVID-19/imunologia , Vacinação
2.
Vaccines (Basel) ; 12(4)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38675761

RESUMO

SARS-CoV-2 variants have evolved over time in recent years, demonstrating immune evasion of vaccine-induced neutralizing antibodies directed against the original S protein. Updated S-targeted vaccines provide a high level of protection against circulating variants of SARS-CoV-2, but this protection declines over time due to ongoing virus evolution. To achieve a broader protection, novel vaccine candidates involving additional antigens with low mutation rates are currently needed. Based on our recently studied mRNA lipid nanoparticle (mRNA-LNP) platform, we have generated mRNA-LNP encoding SARS-CoV-2 structural proteins M, N, S from different virus variants and studied their immunogenicity separately or in combination in vivo. As a result, all mRNA-LNP vaccine compositions encoding the S and N proteins induced excellent titers of RBD- and N-specific binding antibodies. The T cell responses were mainly specific CD4+ T cell lymphocytes producing IL-2 and TNF-alpha. mRNA-LNP encoding the M protein did not show a high immunogenicity. High neutralizing activity was detected in the sera of mice vaccinated with mRNA-LNP encoding S protein (alone or in combinations) against closely related strains, but was undetectable or significantly lower against an evolutionarily distant variant. Our data showed that the addition of mRNAs encoding S and M antigens to mRNA-N in the vaccine composition enhanced the immunogenicity of mRNA-N and induced a more robust immune response to the N protein. Based on our results, we suggested that the S protein plays a key role in enhancing the immune response to the N protein when they are both encoded in the mRNA-LNP vaccine.

3.
Front Immunol ; 14: 1098302, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865543

RESUMO

Single-domain antibodies (sdAbs, VHHs, or nanobodies) are a promising tool for the treatment of both infectious and somatic diseases. Their small size greatly simplifies any genetic engineering manipulations. Such antibodies have the ability to bind hard-to-reach antigenic epitopes through long parts of the variable chains, the third complementarity-determining regions (CDR3s). VHH fusion with the canonical immunoglobulin Fc fragment allows the Fc-fusion single-domain antibodies (VHH-Fc) to significantly increase their neutralizing activity and serum half-life. Previously we have developed and characterized VHH-Fc specific to botulinum neurotoxin A (BoNT/A), that showed a 1000-fold higher protective activity than monomeric form when challenged with five times the lethal dose (5 LD50) of BoNT/A. During the COVID-19 pandemic, mRNA vaccines based on lipid nanoparticles (LNP) as a delivery system have become an important translational technology that has significantly accelerated the clinical introduction of mRNA platforms. We have developed an mRNA platform that provides long-term expression after both intramuscular and intravenous application. The platform has been extensively characterized using firefly luciferase (Fluc) as a reporter. An intramuscular administration of LNP-mRNA encoding VHH-Fc antibody made it possible to achieve its rapid expression in mice and resulted in 100% protection when challenged with up to 100 LD50 of BoNT/A. The presented approach for the delivery of sdAbs using mRNA technology greatly simplifies drug development for antibody therapy and can be used for emergency prophylaxis.


Assuntos
Toxinas Botulínicas Tipo A , COVID-19 , Anticorpos de Domínio Único , Animais , Humanos , Camundongos , Anticorpos de Domínio Único/genética , Pandemias , Relação Dose-Resposta a Droga
4.
Vaccines (Basel) ; 11(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36851307

RESUMO

A neonatal vaccination against the Hepatitis B virus (HBV) infection was initiated in Russia 20 years ago, with catch-up immunization for adolescents and adults under the age of 60 years launched in 2006. Here, we have assessed the humoral immunity to HBV in different regions of Russia, as well as the infection frequency following 20 years of a nationwide vaccination campaign. We have also evaluated the role of immune-escape variants in continuing HBV circulation. A total of 36,149 healthy volunteers from nine regions spanning the Russian Federation from west to east were tested for HBV surface antigen (HBsAg), antibodies to HBV capsid protein (anti-HBc), and antibodies to HBsAg (anti-HBs). HBV sequences from 481 chronic Hepatitis B patients collected from 2018-2022 were analyzed for HBsAg immune-escape variants, compared with 205 sequences obtained prior to 2010. Overall, the HBsAg detection rate was 0.8%, with this level significantly exceeded only in one study region, the Republic of Dagestan (2.4%, p < 0.0001). Among the generation vaccinated at birth, the average HBsAg detection rate was below 0.3%, ranging from 0% to 0.7% depending on the region. The anti-HBc detection rate in subjects under 20 years was 7.4%, indicating ongoing HBV circulation. The overall proportion of participants under 20 years with vaccine-induced HBV immunity (anti-HBs positive, anti-HBc negative) was 41.7% but below 10% in the Tuva Republic and below 25% in the Sverdlovsk and Kaliningrad regions. The overall prevalence of immune-escape HBsAg variants was 25.2% in sequences obtained from 2018-2022, similar to the prevalence of 25.8% in sequences collected prior to 2010 (p > 0.05). The population dynamics of immune-escape variants predicted by Bayesian analysis have remained stable over the last 20 years, indicating the absence of vaccine-driven positive selection. In contrast, the wild-type HBV population size experienced a rapid decrease starting in the mid-1990s, following the introduction of mass immunization, but it subsequently began to recover, reaching pre-vaccination levels by 2020. Taken together, these data indicate that it is gaps in vaccination, and not virus evolution, that may be responsible for the continued virus circulation despite 20 years of mass vaccination.

5.
J Immunol Methods ; 512: 113408, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565812

RESUMO

Serosurveillance and seroprevalence studies should be carried out to monitor vaccine-preventable diseases. Multiplex immunoassay (MIA) systems are useful tools for this purpose, allowing the simultaneous quantitative detection of antibodies in one small serum sample, which presents an advantage over conventional methods, such as enzyme-linked immunosorbent assays (ELISAs). Therefore, we developed a multiplex immunoassay for the measurement of antibodies against seven vaccine-preventable infections (measles, rubella, mumps, tetanus, diphtheria, pertussis and Haemophilus influenza type b (Hib) infection). In our multiplex system, heterologous inhibition generally did not exceed 10%, while homologous inhibition varied between 90 and 98%. The intra- and inter-assay variability was ≤11%. The results of in-house MIA showed satisfactory correlation with commercial ELISAs, with Spearman correlation coefficients from 0.90 to 0.98. At the cut-off values defined for our MIA the serostatus can be determined with high sensitivity (89-100%) and specificity (92-98%). Thus, the developed in-house MIA represents a feasible alternative to conventional ELISAs and could be used for large-scale serosurveillance/seroprevalence studies of vaccine-preventable diseases.


Assuntos
Doenças Preveníveis por Vacina , Humanos , Estudos Soroepidemiológicos , Anticorpos Antibacterianos , Imunoglobulina G , Imunoensaio/métodos , Anticorpos Antivirais
6.
Vaccines (Basel) ; 10(9)2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36146501

RESUMO

The data on hepatitis A virus (HAV) seroprevalence are critical for the implementation of a universal mass vaccination (UMV) strategy. The latter has not been implemented in Russia; however, regional child vaccination programs have been adopted in some parts of the country. The aim of this study is to assess changes in HAV immunity within the last decade in regions of Russia with different vaccination strategies and different vaccination coverage rates. In regions where UMV has not been implemented and HAV vaccination coverage rates do not exceed the national average, the 50% seroprevalence threshold has shifted in the Moscow region from people aged under 40 years in 2008 to people aged over 59 years in 2020, and from people aged under 30 years to people aged over 40 years in the Khabarovsk region. In two regions (Yakutia and Sverdlovsk), a two-dose-based UMV scheme has been in place since 2011 and 2003, respectively, and in Tuva single-dose child immunization was launched in 2012. These regional programs have resulted in a significant increase in HAV seroprevalence in children and adolescents. In Yakutia, 50% herd immunity had been achieved by 2020 in age groups under 20 years, compared to 20−30% seroprevalence rates in 2008. In the Sverdlovsk region, HAV immunity has increased to >65% over the decade in children aged over 10 years, adolescents and young adults, whereas it declined in older age groups. However, a three-fold drop in HAV immunity has occurred in children under 10 years of age, reflecting a significant decline in vaccination coverage. In Tuva, HAV immunity rates in children under 10 years old increased two-fold to exceed 50% by 2020. These data suggest that UMV should be implemented on a national level. Measures to control vaccination coverage and catch-up vaccination campaigns are recommended in order to maintain the effectiveness of existing HAV vaccination programs.

7.
Vaccines (Basel) ; 11(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36679936

RESUMO

Vaccination against COVID-19 has occurred in Russia for more than two years. According to the Russian official clinical guidelines to maintain tense immunity in the conditions of the ongoing COVID-19 pandemic, it is necessary to use booster immunization six months after primary vaccination or a previous COVID-19 contraction. It is especially important to ensure the maintenance of protective immunity in the elderly, who are at risk of severe courses of COVID-19. Meanwhile, the immunological effectiveness of the booster doses has not been sufficiently substantiated. To investigate the immunogenicity of Sputnik V within the recommended revaccination regimen and evaluate the effectiveness of booster doses, we conducted this study on 3983 samples obtained from individuals previously vaccinated with Sputnik V in Moscow. We analyzed the level of antibodies in BAU/mL three times: (i) six months after primary immunization immediately before the booster (RV), (ii) 3 weeks after the introduction of the first component of the booster (RV1), and (iii) 3 weeks after the introduction of the second component of the booster (RV2). Six months after the primary vaccination with Sputnik V, 95.5% of patients maintained a positive level of IgG antibodies to the receptor-binding domain (RBD) of SARS-CoV-2. The degree of increase in the specific virus-neutralizing antibodies level after revaccination increased with a decrease in their initial level just before the booster dose application. In the group of people with the level of antibodies up to 100 BAU/mL six months after the vaccination, a more than eightfold increase (p < 0.001, Wilcoxon criterion with Bonferroni adjustment) in the level of specific antibodies was observed (Me = 8.84 (IQR: 3.63−30.61)). A significant increase in the IgG level after receiving both the first and the second booster doses occurred at the initial titer level up to 300 BAU/ mL (p < 0.001) in those who did not contract COVID-19 in the past and up to 100 BAU/mL (p < 0.001) in those who were previously infected with SARS-CoV-2. A significant increase in the antibody level after the first dose of the booster was noted for people who had up to 500 BAU/mL (p < 0.05), regardless of the previous COVID-19 infection. Thus, revaccination is most effective in individuals with an antibody level below 500 BAU/mL, regardless of the vaccinee age and COVID-19 contraction. For the first time, it has been shown that a single booster dose of the Sputnik vaccine is sufficient to form a protective immunity in most vaccinees regardless of age and preexisting antibody level.

8.
Viruses ; 15(1)2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36680077

RESUMO

The factors influencing hepatitis E virus (HEV) circulation remain largely unexplored. We investigated HEV seroprevalence in humans and the prevalence of infection in farm pigs and rabbits in different regions of the Russian Federation, as well as the genetic diversity and population dynamics of the HEV. The anti-HEV IgG antibody detection rates in the general population increase significantly with age, from 1.5% in children and adolescents under 20 years old to 4.8% in adults aged between 20 and 59 years old to 16.7% in people aged 60 years and older. HEV seroprevalence varies between regions, with the highest rate observed in Belgorod Region (16.4% compared with the national average of 4.6%), which also has the country's highest pig population. When compared with the archival data, both increases and declines in HEV seroprevalence have been observed within the last 10 years, depending on the study region. Virus shedding has been detected in 19 out of the 21 pig farms surveyed. On one farm, the circulation of the same viral strain for five years was documented. All the human and animal strains belonged to the HEV-3 genotype, with its clade 2 sequences being predominant in pigs. The sequences are from patients, pigs, and sewage from pig farms clustered together, suggesting a zoonotic infection in humans and possible environmental contamination. The HEV-3 population size that was predicted using SkyGrid reconstruction demonstrated exponential growth in the 1970s-1990s, with a subsequent decline followed by a short rise around the year 2010, the pattern being similar to the dynamics of the pig population in the country. The HEV-3 reproduction number (Re) that was predicted using birth-death skyline analysis has fluctuated around 1 over the past 20 years in Russia but is 10 times higher in Belgorod Region. In conclusion, the HEV-3 circulation varies both geographically and temporally, even within a single country. The possible factors contributing to this variability are largely related to the circulation of the virus among farm pigs.


Assuntos
Vírus da Hepatite E , Hepatite E , Doenças dos Suínos , Adulto , Adolescente , Criança , Suínos , Humanos , Animais , Coelhos , Pessoa de Meia-Idade , Idoso , Adulto Jovem , Vírus da Hepatite E/genética , Hepatite E/epidemiologia , Hepatite E/veterinária , Estudos Soroepidemiológicos , RNA Viral/genética , RNA Viral/análise , Filogenia , Federação Russa/epidemiologia
9.
Front Immunol ; 12: 771609, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34858428

RESUMO

An excessive inflammatory response to SARS-CoV-2 is thought to be a major cause of disease severity and mortality in patients with COVID-19. Longitudinal analysis of cytokine release can expand our understanding of the initial stages of disease development and help to identify early markers serving as predictors of disease severity. In this study, we performed a comprehensive analysis of 46 cytokines (including chemokines and growth factors) in the peripheral blood of a large cohort of COVID-19 patients (n=444). The patients were classified into five severity groups. Longitudinal analysis of all patients revealed two groups of cytokines, characterizing the "early" and "late" stages of the disease course and the switch between type 1 and type 2 immunity. We found significantly increased levels of cytokines associated with different severities of COVID-19, and levels of some cytokines were significantly higher during the first three days from symptom onset (DfSO) in patients who eventually required intensive care unit (ICU) therapy. Additionally, we identified nine cytokines, TNF-α, IL-10, MIG, IL-6, IP-10, M-CSF, G-CSF, GM-CSF, and IFN-α2, that can be used as good predictors of ICU requirement at 4-6 DfSO.


Assuntos
Anticorpos Antivirais/sangue , COVID-19/mortalidade , Síndrome da Liberação de Citocina/sangue , Citocinas/sangue , SARS-CoV-2/imunologia , Índice de Gravidade de Doença , Reação de Fase Aguda/sangue , Anticorpos Antivirais/imunologia , COVID-19/patologia , Cuidados Críticos/estatística & dados numéricos , Síndrome da Liberação de Citocina/patologia , Feminino , Humanos , Imunoglobulina A/sangue , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Masculino , Pessoa de Meia-Idade , Prognóstico , RNA Viral/análise
10.
Vaccines (Basel) ; 8(4)2020 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-33153191

RESUMO

GamTBvac is a candidate tuberculosis vaccine with two fusion proteins, containing Ag85a, ESAT6, CFP10, and a dextran-binding domain (DBD). Phase II of a double-blind, randomized, multicenter, placebo-controlled study in parallel groups in healthy adults to evaluate the safety and immunogenicity of GamTBvac in 180 previously-vaccinated with Bacillus Calmette-Guérin vaccine (BCG) healthy volunteers without Mycobacterium tuberculosis (MTB) infection was conducted. The dose (0.5 mL) of either the study drug or a placebo was administered subcutaneously twice with an 8-week interval. At eight timepoints from 14 to 150 days, whole blood and sera were assayed. Antigen-specific T-cell responses were measured by an in-house interferon-gamma release assay (IGRA-test), the QuantiFERON (QTF) test, and intracellular cytokine staining (ICS). For antibody response detection, the bead-based multiplex immunoassay (MIA) was applied. The vaccine confirmed an acceptable safety profile previously shown in a first-in-human clinical study. After stimulation with both fusions, the highest median level of INF-γ was detected on day 21. The GamTBvac vaccine induced antigen-specific interferon-gamma release, Th1 cytokine-expressing CD4+ T-cells, and IgG responses and results support further clinical testing of GamTBvac.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...