Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Arthritis Res Ther ; 26(1): 65, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38459582

RESUMO

BACKGROUND: Lymphopenia, autoantibodies and activation of the type I interferon (IFN) system are common features in systemic lupus erythematosus (SLE). We speculate whether lymphocyte subset counts are affected by pregnancy and if they relate to autoantibody profiles and/or IFNα protein in SLE pregnancy. METHODS: Repeated blood samples were collected during pregnancy from 80 women with SLE and 51 healthy controls (HC). Late postpartum samples were obtained from 19 of the women with SLE. Counts of CD4 + and CD8 + T cells, B cells and NK cells were measured by flow cytometry. Positivity for anti-nuclear antibodies (ANA) fine specificities (double-stranded DNA [dsDNA], Smith [Sm], ribonucleoprotein [RNP], chromatin, Sjögren's syndrome antigen A [SSA] and B [SSB]) and anti-phospholipid antibodies (cardiolipin [CL] and ß2 glycoprotein I [ß2GPI]) was assessed with multiplexed bead assay. IFNα protein concentration was quantified with Single molecule array (Simoa) immune assay. Clinical data were retrieved from medical records. RESULTS: Women with SLE had lower counts of all lymphocyte subsets compared to HC throughout pregnancy, but counts did not differ during pregnancy compared to postpartum. Principal component analysis revealed that low lymphocyte subset counts differentially related to autoantibody profiles, cluster one (anti-dsDNA/anti-Sm/anti-RNP/anti-Sm/RNP/anti-chromatin), cluster two (anti-SSA/anti-SSB) and cluster three (anti-CL/anti-ß2GPI), IFNα protein levels and disease activity. CD4 + T cell counts were lower in women positive to all ANA fine specificities in cluster one compared to those who were negative, and B cell numbers were lower in women positive for anti-dsDNA and anti-Sm compared to negative women. Moreover, CD4 + T cell and B cell counts were lower in women with moderate/high compared to no/low disease activity, and CD4 + T cell count was lower in IFNα protein positive relative to negative women. Finally, CD4 + T cell count was unrelated to treatment. CONCLUSION: Lymphocyte subset counts are lower in SLE compared to healthy pregnancies, which seems to be a feature of the disease per se and not affected by pregnancy. Our results also indicate that low lymphocyte subset counts relate differentially to autoantibody profiles, IFNα protein levels and disease activity, which could be due to divergent disease pathways.


Assuntos
Lúpus Eritematoso Sistêmico , Linfopenia , T-Linfocitopenia Idiopática CD4-Positiva , Feminino , Humanos , Gravidez , Anticorpos Antinucleares , Autoanticorpos , DNA , Lúpus Eritematoso Sistêmico/complicações , Lúpus Eritematoso Sistêmico/patologia , T-Linfocitopenia Idiopática CD4-Positiva/etiologia , T-Linfocitopenia Idiopática CD4-Positiva/imunologia , Interferon-alfa
2.
Eur J Clin Pharmacol ; 80(5): 717-727, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38353689

RESUMO

PURPOSE: AlzeCure Pharma AB is developing novel positive allosteric modulators of Trk-receptors for treatment of Alzheimer's disease, depression, other psychiatric conditions and other disorders where cognition is impaired. The preceding candidate drug ACD855 was shown to have a too long half-life in humans to allow further development. To de-risk the development of the follow-up compound ACD856, the oral single ascending dose study of ACD856 in humans was preceded by an intravenous microdose study, assessing the elimination half-life in plasma. METHODS: A phase 0 study with a microdose of ACD856 (0.100 mg), was conducted in six healthy male subjects all receiving ACD856. Sequentially, a randomized, placebo-controlled, double-blind Phase I single ascending oral dose study (1 - 150 mg) was conducted, including 56 healthy subjects. Both studies assessed the safety and tolerability, as well as the PK properties of ACD856 after single dose intravenous and oral administration. RESULTS: ACD856 was well tolerated with no treatment emergent, or dose related adverse events or other safety assessments. In the microdose study, ACD856 exhibited a bi-exponential plasma decline, low distribution volume, low plasma clearance with a half-life of approximately 20 hours. Orally, ACD856 exhibited rapid absorption, an almost complete bioavailability and a dose proportional increase in exposure. While the Cmax was lowered and delayed by food intake, the effect on plasma half-life and the overall bioavailability was low. No renal elimination of ACD856 was detected. CONCLUSION: The prediction proved accurate demonstrating the value of conducting a microdose study prior to ascending dose studies. TRIAL REGISTRATION: NCT05783830 March 24, 2023 (microdose study, retrospectively registered) and NCT05077631 October 14, 2021 (single ascending dose study).


Assuntos
Voluntários Saudáveis , Humanos , Masculino , Disponibilidade Biológica , Área Sob a Curva , Administração Oral , Meia-Vida , Método Duplo-Cego , Relação Dose-Resposta a Droga
3.
Eur J Immunol ; 54(2): e2350623, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37972111

RESUMO

Pseudomonas aeruginosa is a Gram-negative bacterium and an opportunistic pathogen ubiquitously present throughout nature. LecB, a fucose-, and mannose-binding lectin, is a prominent virulence factor of P. aeruginosa, which can be expressed on the bacterial surface but also be secreted. However, the LecB interaction with human immune cells remains to be characterized. Neutrophils comprise the first line of defense against infections and their production of reactive oxygen species (ROS) and release of extracellular traps (NETs) are critical antimicrobial mechanisms. When profiling the neutrophil glycome we found several glycoconjugates on granule and plasma membranes that could potentially act as LecB receptors. In line with this, we here show that soluble LecB can activate primed neutrophils to produce high levels of intracellular ROS (icROS), an effect that was inhibited by methyl fucoside. On the other hand, soluble LecB inhibits P. aeruginosa-induced icROS production. In support of that, during phagocytosis of wild-type and LecB-deficient P. aeruginosa, bacteria with LecB induced less icROS production as compared with bacteria lacking the lectin. Hence, LecB can either induce or inhibit icROS production in neutrophils depending on the circumstances, demonstrating a novel and potential role for LecB as an immunomodulator of neutrophil functional responses.


Assuntos
Armadilhas Extracelulares , Neutrófilos , Humanos , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Lectinas
4.
J Leukoc Biol ; 115(3): 536-546, 2024 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-37992073

RESUMO

Candida albicans belongs to our commensal mucosal flora and in immune-competent individuals in the absence of epithelial damage, this fungus is well tolerated and controlled by our immune defense. However, C. albicans is an opportunistic microorganism that can cause different forms of infections, ranging from superficial to life-threatening systemic infections. C. albicans is polymorphic and switches between different phenotypes (e.g. from yeast form to hyphal form). C. albicans hyphae are invasive and can grow into tissues to eventually reach circulation. During fungal infections, neutrophils in particular play a critical role for the defense, but how neutrophils are directed toward the invasive forms of fungi is less well understood. We set out to investigate possible neutrophil chemoattractants released by C. albicans into culture supernatants. We found that cell-free culture supernatants from the hyphal form of C. albicans induced both neutrophil chemotaxis and concomitant intracellular calcium transients. Size separation and hydrophobic sorting of supernatants indicated small hydrophilic factors as responsible for the activity. Further analysis showed that the culture supernatants contained high levels of short-chain fatty acids with higher levels from hyphae as compared to yeast. Short-chain fatty acids are known neutrophil chemoattractants acting via the neutrophil free fatty acid receptor 2. In line with this, the calcium signaling in neutrophils induced by hyphae culture supernatants was blocked by a free fatty acid receptor 2 antagonist and potently increased in the presence of a positive allosteric modulator. Our data imply that short-chain fatty acids may act as a recruitment signal whereby neutrophils can detect C. albicans hyphae.


Assuntos
Candida albicans , Neutrófilos , Humanos , Ácidos Graxos não Esterificados/análise , Hifas/química , Hifas/genética , Quimiotaxia , Ácidos Graxos Voláteis/análise , Fatores Quimiotáticos
5.
Front Immunol ; 14: 1233101, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37954595

RESUMO

We describe a female patient suffering from severe chronic non-bacterial osteomyelitis (CNO) with systemic inflammation and advanced malnutrition and complete deficiency of myeloperoxidase (MPO). CNO is a rare autoinflammatory bone disorder associated with dysregulation of the innate immune system. MPO deficiency is a genetic disorder with partial or complete absence of the phagocyte peroxidase MPO. MPO deficiency has no established clinical phenotype but reports indicate increased susceptibility to infection and chronic inflammation. The patient's symptoms began at 10 years of age with pain in the thighs, systemic inflammation and malnutrition. She was diagnosed with CNO at 14 years of age. Treatment with nonsteroidal anti-inflammatory drugs, corticosteroids, bisphosphonates or IL1-receptor antagonists (anakinra) did not relieve the symptoms. However, the patient responded instantly and recovered from her clinical symptoms when treated with TNFα blockade (adalimumab). Three years after treatment initiation adalimumab was withdrawn, resulting in rapid symptom recurrence. When reintroducing adalimumab, the patient promptly responded and went into remission. In addition to clinical and laboratory profiles, neutrophil functions (reactive oxygen species, ROS; neutrophil extracellular traps, NETs; degranulation; apoptosis; elastase activity) were investigated both in a highly inflammatory state (without treatment) and in remission (on treatment). At diagnosis, neither IL1ß, IL6, nor TNFα was significantly elevated in serum, but since TNFα blockade terminated the inflammatory symptoms, the disease was likely TNFα-driven. All neutrophil parameters were normal both during treatment and treatment withdrawal, except for MPO-dependent intracellular ROS- and NET formation. The role of total MPO deficiency for disease etiology and severity is discussed.


Assuntos
Desnutrição , Osteomielite , Feminino , Humanos , Adalimumab/uso terapêutico , Inflamação , Osteomielite/diagnóstico , Osteomielite/tratamento farmacológico , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Criança , Adolescente
6.
EMBO Rep ; 24(11): e57571, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37795769

RESUMO

The peptide toxin candidalysin, secreted by Candida albicans hyphae, promotes stimulation of neutrophil extracellular traps (NETs). However, candidalysin alone triggers a distinct mechanism for NET-like structures (NLS), which are more compact and less fibrous than canonical NETs. Candidalysin activates NADPH oxidase and calcium influx, with both processes contributing to morphological changes in neutrophils resulting in NLS formation. NLS are induced by leucotoxic hypercitrullination, which is governed by calcium-induced protein arginine deaminase 4 activation and initiation of intracellular signalling events in a dose- and time-dependent manner. However, activation of signalling by candidalysin does not suffice to trigger downstream events essential for NET formation, as demonstrated by lack of lamin A/C phosphorylation, an event required for activation of cyclin-dependent kinases that are crucial for NET release. Candidalysin-triggered NLS demonstrate anti-Candida activity, which is resistant to nuclease treatment and dependent on the deprivation of Zn2+ . This study reveals that C. albicans hyphae releasing candidalysin concurrently trigger canonical NETs and NLS, which together form a fibrous sticky network that entangles C. albicans hyphae and efficiently inhibits their growth.


Assuntos
Candida albicans , Armadilhas Extracelulares , Candida albicans/metabolismo , Armadilhas Extracelulares/metabolismo , Cálcio/metabolismo , Proteínas Fúngicas/metabolismo
7.
Glycobiology ; 33(12): 1128-1138, 2023 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-37656214

RESUMO

Chronic obstructive pulmonary disease (COPD) kills millions of people annually and patients suffering from exacerbations of this disorder display high morbidity and mortality. The clinical course of COPD is associated with dysbiosis and infections, but the underlying mechanisms are poorly understood. Glycosylation of proteins play roles in regulating interactions between microbes and immune cells, and knowledge on airway glycans therefore contribute to the understanding of infections. Furthermore, glycans have biomarker potential for identifying smokers with enhanced risk for developing COPD as well as COPD subgroups. Here, we characterized the N-glycosylation in the lower airways of healthy never-smokers (HNS, n = 5) and long-term smokers (LTS) with (LTS+, n = 4) and without COPD (LTS-, n = 8). Using mass spectrometry, we identified 57 highly confident N-glycan structures whereof 38 oligomannose, complex, and paucimannose type glycans were common to BAL samples from HNS, LTS- and LTS+ groups. Hybrid type N-glycans were identified only in the LTS+ group. Qualitatively and quantitatively, HNS had lower inter-individual variation between samples compared to LTS- or LTS+. Cluster analysis of BAL N-glycosylation distinguished LTS from HNS. Correlation analysis with clinical parameters revealed that complex N-glycans were associated with health and absence of smoking whereas oligomannose N-glycans were associated with smoking and disease. The N-glycan profile from monocyte-derived macrophages differed from the BAL N-glycan profiles. In conclusion, long-term smokers display substantial alterations of N-glycosylation in the bronchoalveolar space, and the hybrid N-glycans identified only in long-term smokers with COPD deserve to be further studied as potential biomarkers.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Fumantes , Humanos , Glicosilação , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar , Biomarcadores/metabolismo , Polissacarídeos , Líquido da Lavagem Broncoalveolar/química
8.
Proc Natl Acad Sci U S A ; 120(36): e2303867120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639587

RESUMO

Neutrophils store microbicidal glycoproteins in cytosolic granules to fight intruding pathogens, but their granule distribution and formation mechanism(s) during granulopoiesis remain unmapped. Herein, we comprehensively profile the neutrophil N-glycoproteome with spatiotemporal resolution by analyzing four key types of intracellular organelles isolated from blood-derived neutrophils and during their maturation from bone marrow-derived progenitors using a glycomics-guided glycoproteomics approach. Interestingly, the organelles of resting neutrophils exhibited distinctive glycophenotypes including, most strikingly, highly truncated N-glycans low in α2,6-sialylation and Lewis fucosylation decorating a diverse set of microbicidal proteins (e.g., myeloperoxidase, azurocidin, neutrophil elastase) in the azurophilic granules. Excitingly, proteomics and transcriptomics data from discrete myeloid progenitor stages revealed that profound glycoproteome remodeling underpins the promyelocytic-to-metamyelocyte transition and that the glycophenotypic differences are driven primarily by dynamic changes in protein expression and less by changes within the glycosylation machinery. Notable exceptions were the oligosaccharyltransferase subunits responsible for initiation of N-glycoprotein biosynthesis that were strongly expressed in early myeloid progenitors correlating with relatively high levels of glycosylation of the microbicidal proteins in the azurophilic granules. Our study provides spatiotemporal insights into the complex neutrophil N-glycoproteome featuring intriguing organelle-specific N-glycosylation patterns formed by dynamic glycoproteome remodeling during the early maturation stages of the myeloid progenitors.


Assuntos
Neutrófilos , Proteoma , Glicosilação , Cognição , Grânulos Citoplasmáticos
9.
Arthritis Res Ther ; 25(1): 107, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349744

RESUMO

BACKGROUND: An increased risk of pregnancy complications is seen in women with systemic lupus erythematosus (SLE), but the specific immunopathological drivers are still unclear. Hallmarks of SLE are granulocyte activation, type I interferon (IFN) overproduction, and autoantibodies. Here we examined whether low-density granulocytes (LDG) and granulocyte activation increase during pregnancy, and related the results to IFNα protein levels, autoantibody profile, and gestational age at birth. METHODS: Repeated blood samples were collected during pregnancy in trimesters one, two, and three from 69 women with SLE and 27 healthy pregnant women (HC). Nineteen of the SLE women were also sampled late postpartum. LDG proportions and granulocyte activation (CD62L shedding) were measured by flow cytometry. Plasma IFNα protein concentrations were quantified by single molecule array (Simoa) immune assay. Clinical data were obtained from medical records. RESULTS: Women with SLE had higher LDG proportions and increased IFNα protein levels compared to HC throughout pregnancy, but neither LDG fractions nor IFNα levels differed during pregnancy compared to postpartum in SLE. Granulocyte activation status was higher in SLE relative to HC pregnancies, and it was increased during pregnancy compared to after pregnancy in SLE. Higher LDG proportions in SLE were associated with antiphospholipid positivity but not to IFNα protein levels. Finally, higher LDG proportions in trimester three correlated independently with lower gestational age at birth in SLE. CONCLUSION: Our results suggest that SLE pregnancy results in increased peripheral granulocyte priming, and that higher LDG proportions late in pregnancy are related to shorter pregnancy duration but not to IFNα blood levels in SLE.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Recém-Nascido , Humanos , Feminino , Gravidez , Granulócitos , Interferon-alfa , Autoanticorpos
10.
J Immunol Res ; 2023: 5980287, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153639

RESUMO

Circulating antieosinophil antibodies (AEOSA) have been associated with various autoimmune conditions affecting the liver, kidneys, lungs, and joints but are not part of routine clinical diagnostics. While analyzing human sera for antineutrophil cytoplasmic antibodies (ANCA) by indirect immunofluorescence (IIF) on granulocytes, 0.8% of analyzed samples were found to be reactive with eosinophils. Our aim was to determine the diagnostic relevance and antigenic specificity of AEOSA. AEOSA were seen either in combination with an myeloperoxidase (MPO)-positive p-ANCA (44%; AEOSA+/ANCA+) or on their own (56%; AEOSA+/ANCA-). AEOSA/ANCA positivity was seen in patients with thyroid disease (44%) or vasculitis (31%), while AEOSA+/ANCA- pattern was more common in patients with autoimmune disorders of the gastrointestinal tract and/or liver. Eosinophil peroxidase (EPX) was the main target recognized in 66% of the AEOSA+ sera by enzyme-linked immunosorbent assay (ELISA). Eosinophil cationic protein (ECP) and eosinophil-derived neurotoxin (EDN) were also identified as target antigens but less frequently and only in combination with EPX. In conclusion, we confirmed that EPX is a major target of AEOSA, illustrating the high antigenic potential of EPX. Our results also demonstrate the presence of concomitant AEOSA/ANCA positivity in a defined patient group. Further research should aim to elucidate the association of AEOSA with autoimmunity.


Assuntos
Doenças Autoimunes , Vasculite , Humanos , Anticorpos Anticitoplasma de Neutrófilos , Peroxidase , Ensaio de Imunoadsorção Enzimática , Doenças Autoimunes/diagnóstico , Peroxidase de Eosinófilo , Técnica Indireta de Fluorescência para Anticorpo/métodos , Eosinófilos
11.
Glycobiology ; 33(6): 503-511, 2023 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-37073717

RESUMO

Among the responders to microbial invasion, neutrophils represent the earliest and perhaps the most important immune cells that contribute to host defense with the primary role to kill invading microbes using a plethora of stored anti-microbial molecules. One such process is the production of reactive oxygen species (ROS) by the neutrophil enzyme complex NADPH-oxidase, which can be assembled and active either extracellularly or intracellularly in phagosomes (during phagocytosis) and/or granules (in the absence of phagocytosis). One soluble factor modulating the interplay between immune cells and microbes is galectin-3 (gal-3), a carbohydrate-binding protein that regulates a wide variety of neutrophil functions. Gal-3 has been shown to potentiate neutrophil interaction with bacteria, including Staphylococcus aureus, and is also a potent activator of the neutrophil respiratory burst, inducing large amounts of granule-localized ROS in primed cells. Herein, the role of gal-3 in regulating S. aureus phagocytosis and S. aureus-induced intracellular ROS was analyzed by imaging flow cytometry and luminol-based chemiluminescence, respectively. Although gal-3 did not interfere with S. aureus phagocytosis per se, it potently inhibited phagocytosis-induced intracellular ROS production. Using the gal-3 inhibitor GB0139 (TD139) and carbohydrate recognition domain of gal-3 (gal-3C), we found that the gal-3-induced inhibitory effect on ROS production was dependent on the carbohydrate recognition domain of the lectin. In summary, this is the first report of an inhibitory role of gal-3 in regulating phagocytosis-induced ROS production.


Assuntos
Neutrófilos , Staphylococcus aureus , Humanos , Neutrófilos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Galectina 3/metabolismo , Explosão Respiratória , Fagocitose
12.
PLoS One ; 16(12): e0261724, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34932608

RESUMO

Papillon-Lefèvre Syndrome (PLS) is an autosomal recessive monogenic disease caused by loss-of-function mutations in the CTSC gene, thus preventing the synthesis of the protease Cathepsin C (CTSC) in a proteolytically active form. CTSC is responsible for the activation of the pro-forms of the neutrophil serine proteases (NSPs; Elastase, Proteinase 3 and Cathepsin G), suggesting its involvement in a variety of neutrophil functions. In PLS neutrophils, the lack of CTSC protease activity leads to inactivity of the NSPs. Clinically, PLS is characterized by an early, typically pre-pubertal, onset of severe periodontal pathology and palmoplantar hyperkeratosis. However, PLS is not considered an immune deficiency as patients do not typically suffer from recurrent and severe (bacterial and fungal) infections. In this study we investigated an unusual CTSC mutation in two siblings with PLS, a 503A>G substitution in exon 4 of the CTSC gene, expected to result in an amino acid replacement from tyrosine to cysteine at position 168 of the CTSC protein. Both patients bearing this mutation presented with pronounced periodontal pathology. The characteristics and functions of neutrophils from patients homozygous for the 503A>G CTSC mutation were compared to another previously described PLS mutation (755A>T), and a small cohort of healthy volunteers. Neutrophil lysates from patients with the 503A>G substitution lacked CTSC protein and did not display any CTSC or NSP activity, yet neutrophil counts, morphology, priming, chemotaxis, radical production, and regulation of apoptosis were without any overt signs of alteration. However, NET formation upon PMA-stimulation was found to be severely depressed, but not abolished, in PLS neutrophils.


Assuntos
Catepsina C/genética , Armadilhas Extracelulares/metabolismo , Neutrófilos/patologia , Doença de Papillon-Lefevre/genética , Serina Proteases/metabolismo , Adulto , Apoptose , Catepsina C/metabolismo , Citometria de Fluxo , Humanos , Mutação com Perda de Função/genética , Pessoa de Meia-Idade , Doença de Papillon-Lefevre/enzimologia , Doença de Papillon-Lefevre/patologia , Espécies Reativas de Oxigênio/metabolismo , Análise de Sequência de DNA
13.
J Oral Microbiol ; 13(1): 1957368, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34408814

RESUMO

Background: Hydrogen sulfide(H2S) is a bacterial metabolite produced as a result of bacterial growth in subgingival pockets, suggested to partake in the pathogenesis of periodontitis. H2S has previously been shown to induce the secretion of the pro-inflammatory cytokines IL-1ß and IL-18 via the NLRP3 inflammasome in monocytes. Objective: To investigate the non-NLRP3 inflammasome-dependent immunological response of human peripheral blood mononuclear cells (PBMCs) of periodontitis patients and healthy controls exposed to H2S in vitro. Methods: PBMCs of periodontitis patients(N = 31) and healthy controls(N = 32) were exposed to 1 mM sodium hydrosulfide (NaHS) at 37°C for 24 h and the secretion of cytokines was compared to resting cells. TNF-α, IFN-γ, IL-6, IL-8, IL-12p40, IL-12p70, IL-17, MCP-1, and IL-1Ra secretions were measured with Bio-Plex Pro™ Human Cytokine Assay. Results: H2S triggered the secretion of the pro-inflammatory IFN-γ, IL-6, IL-17, TNF-α, IL-12p40, and IL-12p70, while the reverse was seen for IL-1Ra. In addition, a higher basal secretion of IFN-γ, IL-6, IL-12p70, IL-17 and MCP-1 was seen from PBMCs of periodontitis patients compared to healthy controls. Conclusion: The bacterial metabolite H2S triggers the secretion of pro-inflammatory cytokines from PBMCs and may thus have a prominent role in the host-bacteria interplay in periodontitis.

14.
Cell Microbiol ; 23(8): e13348, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33913592

RESUMO

Fusobacterium nucleatum is a gram-negative and anaerobic oral commensal that is implicated in inflammatory conditions of the tooth-supporting structures, that is, periodontal diseases. One of the main characteristics of these conditions is an accumulation of neutrophil granulocytes in the gingival pockets where bacteria reside. Neutrophils are recruited to tissue-residing microbes by gradients of bacteria derived chemoattractants, and the cellular migration over the pocket epithelium into the gingival pocket is likely governed by chemoattractants released by the amino acid fermenting anaerobes typically colonising this site. However, the chemoattractants released by F. nucleatum and other oral anaerobes have long been unidentified. In the present study, we show that the major chemoattractants released during the growth of F. nucleatum are short chain fatty acids (SCFAs), primarily acetate and butyrate. These SCFAs, that are released at high levels as end-products of the metabolism of F. nucleatum, trigger chemotaxis of human neutrophils, as well as cytosolic Ca2+ signals, via free fatty acid receptor 2 (FFAR2). This finding establishes the SCFA-FFAR2 interaction as an important mechanism in the recruitment of neutrophils to the periodontal pocket, but could also be of importance in the pathogenesis of other medical conditions involving colonisation/infection of F. nucleatum.


Assuntos
Fusobacterium nucleatum , Neutrófilos , Fatores Quimiotáticos , Ácidos Graxos não Esterificados , Ácidos Graxos Voláteis , Humanos
15.
Lupus Sci Med ; 8(1)2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33685997

RESUMO

OBJECTIVE: Women with SLE face an increased risk of adverse pregnancy outcomes compared with healthy women, but the underlying immunological mechanisms are unknown. Given the recognised association of neutrophil activation with SLE pathogenesis, we examined whether there is increased neutrophil activation and inflammation in blood and placenta in SLE relative to healthy pregnancy. METHODS: At delivery, peripheral blood, maternal-derived intervillous blood and placentas were collected from 12 SLE and 10 healthy control pregnancies. The proportion of low-density granulocytes (LDGs) and the activation status of LDG and normal-density granulocytes were examined with flow cytometry. The chemokines CXCL8 and CXCL1 were quantified with a cytometric bead-based assay and interferon alpha (IFNα) protein levels with a Simoa method. IFNα-stimulated maternal-derived decidual stromal cells were examined for CXCL8 gene expression with qPCR. A pathologist, blinded to the patient background, examined all placentas. RESULTS: Women with SLE had significantly higher proportions of LDG in peripheral blood compared with controls (p=0.02), and LDG in both peripheral and intervillous blood were more activated in SLE relative to healthy pregnancies (peripheral blood: p=0.002 and intervillous blood: p=0.05). There were higher levels of CXCL8 and CXCL1 in intervillous compared with peripheral blood in women with SLE (p=0.004 and p=<0.0001, respectively) but not in controls. In SLE pregnancy, IFNα was detectable in 6 out of 10 intervillous blood samples but only in one control. Stimulation with IFNα upregulated CXCL8 gene expression in decidual stromal cells from both SLE and healthy pregnancy. Histological chorioamnionitis was present in 6 out of 12 placentas from women with SLE and in 1 out of 10 controls. CONCLUSIONS: In women with SLE, locally produced chemokines in the placenta are increased and may attract and activate neutrophils. This in turn could contribute to placental inflammation and dysfunction and increased risk of placenta-related pregnancy complications.


Assuntos
Granulócitos , Lúpus Eritematoso Sistêmico , Neutrófilos , Adulto , Cesárea , Feminino , Heparina de Baixo Peso Molecular , Humanos , Recém-Nascido , Inflamação , Placenta , Gravidez , Resultado da Gravidez , Adulto Jovem
16.
Artigo em Inglês | MEDLINE | ID: mdl-33642857

RESUMO

PURPOSE: The carbohydrate-binding protein Galectin-3 is increased in several inflammatory diseases and has recently been forwarded as a systemic biomarker in chronic obstructive pulmonary disease (COPD). In this longitudinal study, we characterized the level of systemic Galectin-3 using blood from smokers with a history of COPD and chronic bronchitis (COPD-CB), during stable clinical conditions and exacerbations. PATIENTS AND METHODS: The study population comprised 56 long-term smokers with COPD-CB, 10 long-term smokers without lung disease (LTS) and 10 clinically healthy never-smokers (HNS). Blood samples were analyzed for levels of Galectin-3, leukocyte populations and C-reactive protein (CRP). In addition, sputum samples from the COPD-CB group were analyzed for bacterial growth. RESULTS: When comparing stable clinical conditions and exacerbations in the COPD-CB group, we found that the level of Galectin-3, just like that of CRP, leukocytes and neutrophils, respectively, was increased during exacerbations. However, this exacerbation-associated increase of Galectin-3 was modest. During stable clinical conditions of COPD-CB, the level of Galectin-3 was not elevated in comparison with HNS or LTS. Nor did this level of Galectin-3 distinguish patients that remained in a clinically stable condition throughout the study to those that developed an exacerbation. In addition, neither during stable clinical conditions nor during exacerbations, did the presence of bacterial growth in sputum alter Galectin-3 levels. In contrast to Galectin-3, the level of CRP, leukocytes and neutrophils, respectively, were increased during clinical stable conditions in the COPD-CB group compared with the other groups and were further enhanced during exacerbations. CONCLUSION: Systemic Galectin-3 is increased in a reproducible but modest manner during exacerbations in smokers with COPD-CB. During stable clinical conditions, the level of systemic Galectin-3 does not distinguish patients that remain clinically stable from those that develop exacerbations. This makes it less likely that systemic Galectin-3 may become a clinically useful biomarker in the current setting.


Assuntos
Bronquite Crônica , Doença Pulmonar Obstrutiva Crônica , Bronquite Crônica/diagnóstico , Galectina 3 , Humanos , Estudos Longitudinais , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Fumantes , Escarro
18.
J Leukoc Biol ; 109(2): 349-362, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32531826

RESUMO

In recent years, the concept of distinct subpopulations of human neutrophils has attracted much attention. One bona fide subset marker, exclusively expressed by a proportion of circulating neutrophils in a given individual, and therefore dividing neutrophils in two distinct subpopulations, is the glycoprotein CD177. CD177 is expressed on the plasma and granule membranes of 0-100% of circulating neutrophils depending on the donor. Several in vitro studies have linked CD177 to neutrophil transmigration, yet very few have looked at the role of CD177 for tissue recruitment in vivo. We investigate whether the CD177+ and CD177- neutrophil subsets differ in their propensity to migrate to both aseptic- and microbe-triggered inflamed human tissues. Microbe-triggered neutrophil migration was evaluated in samples of gingival crevicular fluid (GCF) from patients with periodontitis, whereas neutrophil migration to aseptic inflammation was evaluated in synovial fluid from patients with inflammatory arthritis, as well as in exudate from experimental skin chambers applied on healthy donors. We found that the proportion of CD177+ neutrophils was significantly higher in GCF from patients with periodontitis, as compared to blood from the same individuals. Such accumulation of CD177+ neutrophils was not seen in the two models of aseptic inflammation. Moreover, the proportion of CD177+ neutrophils in circulation was significantly higher in the periodontitis patient group, as compared to healthy donors. Our data indicate that the CD177+ neutrophil subset is preferentially recruited to the gingival crevice of periodontitis patients, and may imply that this subtype is of particular importance for situations of microbe-driven inflammation.


Assuntos
Líquido do Sulco Gengival/citologia , Isoantígenos/metabolismo , Neutrófilos/metabolismo , Periodontite/imunologia , Periodontite/patologia , Receptores de Superfície Celular/metabolismo , Artrite/imunologia , Artrite/patologia , Morte Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Proteínas Ligadas por GPI/sangue , Proteínas Ligadas por GPI/metabolismo , Líquido do Sulco Gengival/efeitos dos fármacos , Humanos , Inflamação/imunologia , Inflamação/patologia , Isoantígenos/sangue , Modelos Biológicos , Neutrófilos/efeitos dos fármacos , Periodontite/sangue , Periodontite/microbiologia , Receptores de Superfície Celular/sangue , Líquido Sinovial/efeitos dos fármacos , Líquido Sinovial/metabolismo , Doadores de Tecidos
19.
J Biol Chem ; 296: 100144, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33273015

RESUMO

Myeloperoxidase (MPO) plays essential roles in neutrophil-mediated immunity via the generation of reactive oxidation products. Complex carbohydrates decorate MPO at discrete sites, but their functional relevance remains elusive. To this end, we have characterised the structure-biosynthesis-activity relationship of neutrophil MPO (nMPO). Mass spectrometry demonstrated that nMPO carries both characteristic under-processed and hyper-truncated glycans. Occlusion of the Asn355/Asn391-glycosylation sites and the Asn323-/Asn483-glycans, located in the MPO dimerisation zone, was found to affect the local glycan processing, thereby providing a molecular basis of the site-specific nMPO glycosylation. Native mass spectrometry, mass photometry and glycopeptide profiling revealed significant molecular complexity of diprotomeric nMPO arising from heterogeneous glycosylation, oxidation, chlorination and polypeptide truncation variants and a previously unreported low-abundance monoprotomer. Longitudinal profiling of maturing, mature, granule-separated and pathogen-stimulated neutrophils demonstrated that nMPO is dynamically expressed during granulopoiesis, unevenly distributed across granules and degranulated upon activation. We also show that proMPO-to-MPO maturation occurs during early/mid-stage granulopoiesis. While similar global MPO glycosylation was observed across conditions, the conserved Asn355-/Asn391-sites displayed elevated glycan hyper-truncation, which correlated with higher enzyme activities of MPO in distinct granule populations. Enzymatic trimming of the Asn355-/Asn391-glycans recapitulated the activity gain and showed that nMPO carrying hyper-truncated glycans at these positions exhibits increased thermal stability, polypeptide accessibility and ceruloplasmin-mediated inhibition potential relative to native nMPO. Finally, molecular modelling revealed that hyper-truncated Asn355-glycans positioned in the MPO-ceruloplasmin interface are critical for uninterrupted inhibition. Here, through an innovative and comprehensive approach, we report novel functional roles of MPO glycans, providing new insight into neutrophil-mediated immunity.


Assuntos
Grânulos Citoplasmáticos/enzimologia , Glicopeptídeos/metabolismo , Neutrófilos/enzimologia , Peroxidase/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Glicopeptídeos/química , Glicosilação , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...