Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1304325, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550865

RESUMO

Microbial population heterogeneity leads to different stress responses and growth behavior of individual cells in a population. Previously, a point mutation in the rpsU gene (rpsUG50C) encoding ribosomal protein S21 was identified in a Listeria monocytogenes LO28 variant, which leads to increased multi-stress resistance and a reduced maximum specific growth rate. However, the underlying mechanisms of these phenotypic changes remain unknown. In L. monocytogenes, the alternative sigma factor SigB regulates the general stress response, with its activation controlled by a series of Rsb proteins, including RsbR1 and anti-sigma factor RsbW and its antagonist RsbV. We combined a phenotype and proteomics approach to investigate the acid and heat stress resistance, growth rate, and SigB activation of L. monocytogenes EGDe wild type and the ΔsigB, ΔrsbV, and ΔrsbR1 mutant strains. While the introduction of rpsUG50C in the ΔsigB mutant did not induce a SigB-mediated increase in robustness, the presence of rpsUG50C in the ΔrsbV and the ΔrsbR1 mutants led to SigB activation and concomitant increased robustness, indicating an alternative signaling pathway for the SigB activation in rpsUG50C mutants. Interestingly, all these rpsUG50C mutants exhibited reduced maximum specific growth rates, independent of SigB activation, possibly attributed to compromised ribosomal functioning. In summary, the increased stress resistance in the L. monocytogenes EGDe rpsUG50C mutant results from SigB activation through an unknown mechanism distinct from the classical stressosome and RsbV/RsbW partner switching model. Moreover, the reduced maximum specific growth rate of the EGDe rpsUG50C mutant is likely unrelated to SigB activation and potentially linked to impaired ribosomal function.

2.
Int J Food Microbiol ; 416: 110676, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507974

RESUMO

Listeria monocytogenes biofilms present a significant challenge in the food industry. This study explores the impact of different acidic conditions of culture media and food matrices on the development and removal of biofilms developed on stainless steel surfaces by wild-type (WT) L. monocytogenes strains as well as in two mutant derivatives, ΔsigB and ΔagrA, that have defects in the general stress response and quorum sensing, respectively. Additionally, the study investigates the efficacy of nanoencapsulated carvacrol as an antimicrobial against L. monocytogenes biofilms developed in Tryptic Soy Broth (TSB) culture media acidified to different pH conditions (3.5, 4.5, 5.5, 6.5), and in food substrates (apple juice, strained yogurt, vegetable soup, semi-skimmed milk) having the same pH levels. No biofilm formation was observed for all L. monocytogenes strains at pH levels of 3.5 and 4.5 in both culture media and food substrates. However, at pH 5.5 and 6.5, increased biofilm levels were observed in both the culture media and food substrates, with the WT strain showing significantly higher biofilm formation (3.04-6.05 log CFU cm-2) than the mutant strains (2.30-5.48 log CFU cm-2). For both applications, the nanoencapsulated carvacrol demonstrated more potent antimicrobial activity against biofilms developed at pH 5.5 with 2.23 to 3.61 log reductions, compared to 1.58-2.95 log reductions at pH 6.5, with mutants being more vulnerable in acidic environments. In food substrates, nanoencapsulated carvacrol induced lower log reductions (1.58-2.90) than the ones in TSB (2.02-3.61). These findings provide valuable insights into the impact of different acidic conditions on the development of L. monocytogenes biofilms on stainless steel surfaces and the potential application of nanoencapsulated carvacrol as a biofilm control agent in food processing environments.


Assuntos
Anti-Infecciosos , Cimenos , Listeria monocytogenes , Aço Inoxidável/análise , Biofilmes , Meios de Cultura , Microbiologia de Alimentos , Contagem de Colônia Microbiana
4.
Microbiologyopen ; 12(5): e1379, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37877661

RESUMO

Rifampicin resistance, which is genetically linked to mutations in the RNA polymerase ß-subunit gene rpoB, has a global impact on bacterial transcription and cell physiology. Previously, we identified a substitution of serine 522 in RpoB (i.e., RpoBS522L ) conferring rifampicin resistance to Vibrio vulnificus, a human food-borne and wound-infecting pathogen associated with a high mortality rate. Transcriptional and physiological analysis of V. vulnificus expressing RpoBS522L showed increased basal transcription of stress-related genes and global virulence regulators. Phenotypically these transcriptional changes manifest as disturbed osmo-stress responses and toxin-associated hypervirulence as shown by reduced hypoosmotic-stress resistance and enhanced cytotoxicity of the RpoBS522L strain. These results suggest that RpoB-linked rifampicin resistance has a significant impact on V. vulnificus survival in the environment and during infection.


Assuntos
Rifampina , Vibrio vulnificus , Humanos , Rifampina/farmacologia , Vibrio vulnificus/genética , Proteínas de Bactérias/genética , Mutação , Virulência/genética , RNA Polimerases Dirigidas por DNA/genética
5.
mBio ; : e0171623, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37882515

RESUMO

Stomach acid provides a significant innate barrier to the entry of the food-borne pathogen Listeria monocytogenes into the human gastrointestinal tract. A key determinant of acid resistance in this bacterium is the conserved glutamate decarboxylase system, GadD2 (encoded by the gadT2D2 operon), which helps to maintain the intracellular pH during exposure to gastric acid. In this study, we identified a premature stop codon in a gene located immediately downstream of the gadT2D2 operon that was highly linked to an acid-sensitive phenotype. When this open reading frame was restored through homologous recombination, an acid-resistant phenotype was restored. Through a series of genetic, transcriptomic, and survival experiments, we established that this gene, which we designated gadR, encodes a transcriptional regulator of the gadT2D2 operon. GadR belongs to the RofA family of regulators, primarily found in streptococci, where they are involved in regulating virulence. The data further showed that gadR plays a critical role in the development of acid resistance in response to mild acid exposure, a response that is known as the adaptive acid tolerance response (ATR). A deletion analysis of the gadT2D2 promoter region identified two 18-bp palindromic sequences that are required for the GadR-mediated induction of gadT2D2, suggesting that they act as binding sites for GadR. Overall, this study uncovers a new RofA-like regulator of acid resistance in L. monocytogenes, which plays a significant role in both growth phase-dependent acid resistance and ATR and accounts for previously observed strain-to-strain differences in survival at low pH.IMPORTANCEThe ability to survive the acidic conditions found in the stomach is crucial for the food-borne pathogen Listeria monocytogenes to gain access to the mammalian gastrointestinal tract. Little is currently known about how acid resistance is regulated in this pathogen and why this trait is highly variable between strains. Here, we used comparative genomics to identify a novel RofA-family transcriptional regulator, GadR, that controls the development of acid resistance. The RofA family of regulators was previously found only in a small group of bacterial pathogens, including streptococci, where they regulate virulence properties. We show that gadR encodes the dominant regulator of acid resistance in L. monocytogenes and that its sequence variability accounts for previously observed differences between strains in this trait. Together, these findings significantly advance our understanding of how this important pathogen copes with acid stress and suggest a potential molecular target to aid its control in the food chain.

6.
Access Microbiol ; 5(7)2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601438

RESUMO

The stressosome is a protein complex that senses environmental stresses and mediates the stress response in several Gram-positive bacteria through the activation of the alternative sigma factor SigB. The stressosome locus is found in 44 % of Gram-negative Vibrio vulnificus isolates. However, V. vulnificus does not possess SigB. Nonetheless, in nutrient-limited media, the stressosome modulates gene transcription and bacterial behaviour. In this work, the expression of the stressosome genes was proven during stationary phase in nutrient-rich media and co-transcription as one operonic unit of the stressosome locus and its putative downstream regulatory locus was demonstrated. The construction of a stressosome mutant lacking the genes encoding the four proteins constituting the stressosome complex (VvRsbR, VvRsbS, VvRsbT, VvRsbX) allowed us to examine the role of this complex in vivo. Extensive phenotypic characterization of the ΔRSTX mutant in nutrient-rich media showed that the stressosome does not contribute to growth of V. vulnificus . Moreover, the stressosome did not modulate the tolerance or survival response of V. vulnificus to the range of stresses tested, which included ethanol, hyperosmolarity, hypoxia, high temperature, acidity and oxidative stress. Furthermore, the stressosome was dispensable for motility and exoenzyme production of V. vulnificus in nutrient-rich media. Therefore, in conclusion, although stressosome gene transcription occurs in nutrient-rich media, the stressosome neither has an essential role in stress responses of V. vulnificus nor does it seem to modulate these activities in these conditions. We hypothesise that the stressosome is expressed in nutrient-rich conditions as a sensor complex, but that activation of the complex does not occur in this environment.

7.
Nanotechnology ; 34(45)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37549665

RESUMO

Heteroatom doping of graphene is a promising approach for tailoring its chemical and electronic properties-a prerequisite for many applications such as sensing, catalysis, and energy storage. Doping chemical vapour deposition (CVD) graphene with nitrogen during growth (in situdoping) is a common strategy, but it produces a distribution of inequivalent dopant sites and requires substantial modifications to the CVD growth process. In this study, we demonstrate a novel and simple oxide-mediated approach to introduce nitrogen dopants into pre-existing CVD graphene (ex situdoping) which achieves comparable doping densities toin situdoping methodologies. Furthermore, we demonstrate that thermal annealing of N-doped graphene can selectively remove pyridinic, retaining graphitic and pyrrolic nitrogen dopants, offering an attractive route to further modify graphene functionality. The methodologies we present are simple and scalable to precisely tailor graphene properties without the need to alter CVD growth protocols.

8.
Int J Food Microbiol ; 399: 110238, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37148667

RESUMO

Listeria monocytogenes is a foodborne pathogen that is characterized by its ability to withstand mild stresses (i.e. cold, acid, salt) often encountered in food products or food processing environments. In the previous phenotypic and genotypic characterization of a collection of L. monocytogenes strains, we have identified one strain 1381, originally obtained from EURL-lm, as acid sensitive (reduced survival at pH 2.3) and extremely acid intolerant (no growth at pH 4.9, which supports the growth of most strains). In this study, we investigated the cause of acid intolerance in strain 1381 by isolating and sequencing reversion mutants that were capable of growth at low pH (pH 4.8) to a similar extent as another strain (1380) from the same MLST clonal complex (CC2). Whole genome sequencing showed that a truncation in mntH, which encodes a homologue of an NRAMP (Natural Resistance-Associated Macrophage Protein) type Mn2+ transporter, is responsible for the acid intolerance phenotype observed in strain 1381. However, the mntH truncation alone was not sufficient to explain the acid sensitivity of strain 1381 at lethal pH values as strain 1381R1 (a mntH+ revertant) exhibited similar acid survival to its parental strain at pH 2.3. Further growth experiments demonstrated that Mn2+ (but not Fe2+, Zn2+, Cu2+, Ca2+, or Mg2+) supplementation fully rescues the growth of strain 1381 under low pH conditions, suggesting that a Mn2+ limitation is the likely cause of growth arrest in the mntH- background. Consistent with the important role of Mn2+ in the acid stress response was the finding that mntH and mntB (both encoding Mn2+ transporters) had higher transcription levels following exposure to mild acid stress (pH 5). Taken together, these results provide evidence that MntH-mediated Mn2+ uptake is essential for the growth of L. monocytogenes under low pH conditions. Moreover, since strain 1381 was recommended for conducting food challenge studies by the European Union Reference Laboratory, the use of this strain in evaluating the growth of L. monocytogenes in low pH environments where Mn2+ is scarce should be reconsidered. Furthermore, since it is unknown when strain 1381 acquired the mntH frameshift mutation, the ability of the strains used for challenge studies to grow under food-related stresses needs to be routinely validated.


Assuntos
Listeria monocytogenes , Manganês , Listeria monocytogenes/fisiologia , Tipagem de Sequências Multilocus , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/genética
9.
Infect Immun ; 91(6): e0057122, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37125941

RESUMO

Listeria monocytogenes is a bacterial pathogen capable of causing severe infections but also thriving outside the host. To respond to different stress conditions, L. monocytogenes mainly utilizes the general stress response regulon, which largely is controlled by the alternative sigma factor Sigma B (SigB). In addition, SigB is important for virulence gene expression and infectivity. Upon encountering stress, a large multicomponent protein complex known as the stressosome becomes activated, ultimately leading to SigB activation. RsbX is a protein needed to reset a "stressed" stressosome and prevent unnecessary SigB activation in nonstressed conditions. Consequently, absence of RsbX leads to constitutive activation of SigB even without prevailing stress stimulus. To further examine the involvement of SigB in the virulence of this pathogen, we investigated whether a strain with constitutively active SigB would be affected in virulence factor expression and/or infectivity in cultured cells and in a chicken embryo infection model. Our results suggest that increased SigB activity does not substantially alter virulence gene expression compared with the wild-type (WT) strain at transcript and protein levels. Bacteria lacking RsbX were taken up by phagocytic and nonphagocytic cells at a similar frequency to WT bacteria, both in stressed and nonstressed conditions. Finally, the absence of RsbX only marginally affected the ability of bacteria to infect chicken embryos. Our results suggest only a minor role of RsbX in controlling virulence factor expression and infectivity under these conditions.


Assuntos
Listeria monocytogenes , Embrião de Galinha , Animais , Virulência , Proteínas de Bactérias/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Fator sigma/genética , Regulação Bacteriana da Expressão Gênica
10.
Small ; 19(33): e2300053, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37093214

RESUMO

Bottom-up production of semiconductor nanomaterials is often accompanied by inhomogeneity resulting in a spread in electronic properties which may be influenced by the nanoparticle geometry, crystal quality, stoichiometry, or doping. Using photoluminescence spectroscopy of a population of more than 11 000 individual zinc-doped gallium arsenide nanowires, inhomogeneity is revealed in, and correlation between doping and nanowire diameter by use of a Bayesian statistical approach. Recombination of hot-carriers is shown to be responsible for the photoluminescence lineshape; by exploiting lifetime variation across the population, hot-carrier dynamics is revealed at the sub-picosecond timescale showing interband electronic dynamics. High-throughput spectroscopy together with a Bayesian approach are shown to provide unique insight in an inhomogeneous nanomaterial population, and can reveal electronic dynamics otherwise requiring complex pump-probe experiments in highly non-equilibrium conditions.

11.
Curr Res Microb Sci ; 4: 100186, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36936406

RESUMO

Stressosomes are signal-sensing and integration hubs identified in many bacteria. At present, the role of the stressosome has only been investigated in Gram-positive bacteria. This work represents the first in vivo characterisation of the stressosome in a Gram-negative bacterium, Vibrio vulnificus. Previous in vitro characterisation of the complex has led to the hypothesis of a complex involved in iron metabolism and control of c-di-GMP levels. We demonstrate that the stressosome is probably involved in reshaping the glucose metabolism in Fe- and nutrient-limited conditions and mutations of the locus affect the activation of the glyoxylate shunt. Moreover, we show that the stressosome is needed for the transcription of fleQ and to promote motility, consistent with the hypothesis that the stressosome is involved in regulating c-di-GMP. This report highlights the potential role of the stressosome in a Gram-negative bacterium, with implications for the metabolism and motility of this pathogen.

12.
Int J Food Microbiol ; 394: 110165, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36933360

RESUMO

Listeria monocytogenes is a pathogenic bacterium that can inhabit a diverse range of environmental niches. This is largely attributed to the high proportion of carbohydrate-specific phosphotransferase system (PTS) genes in its genome. Carbohydrates can be assimilated as sources of energy but additionally they can serve as niche-specific cues for L. monocytogenes to shape its global gene expression, in order to cope with anticipated stresses. To examine carbon source utilization among wild L. monocytogenes isolates and to understand underlying molecular mechanisms, a diverse collection of L. monocytogenes strains (n = 168) with whole genome sequence (WGS) data available was screened for the ability to grow in chemically defined media with different carbon sources. The majority of the strains grew in glucose, mannose, fructose, cellobiose, glycerol, trehalose, and sucrose. Maltose, lactose, and rhamnose supported slower growth while ribose did not support any growth. In contrast to other strains, strain1386, which belonged to clonal complex 5 (CC5), was unable to grow on trehalose as a sole carbon source. WGS data revealed that it carried a substitution (N352K) in a putative PTS EIIBC trehalose transporter, TreB, while this asparagine residue is conserved in other strains in this collection. Spontaneous mutants of strain 1386 that could grow in trehalose were found to harbour a reversion of the substitution in TreB. These results provide genetic evidence that TreB is responsible for trehalose uptake and that the N352 residue is essential for TreB activity. Moreover, reversion mutants also restored other unusual phenotypes that strain 1386 displayed, i.e. altered colony morphology, impaired biofilm development, and reduced acid resistance. Transcriptional analysis at stationary phase with buffered BHI media revealed that trehalose metabolism positively influences the transcription of genes encoding amino acid-based acid resistance mechanisms. In summary, our results demonstrated that N352 is key to the function of the sole trehalose transporter TreB in L. monocytogenes and suggest that trehalose metabolism alters physiology to favour biofilm development and acid stress resistance. Moreover, since strain 1386 is among the strains recommended by the European Union Reference Laboratory for conducting food challenge studies in order to determine whether or not L. monocytogenes can grow in food, these findings have important implications for food safety.


Assuntos
Listeria monocytogenes , Trealose/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Carboidratos , Proteínas de Membrana Transportadoras , Biofilmes
13.
PLoS One ; 18(2): e0281749, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36780538

RESUMO

Data literacy has been defined as "the ability to read, work with, analyze and argue with data". The United Nations has highlighted a growing risk of inequality for people excluded from the new world of data by lack of education, language, poverty, and discrimination and has called for the development of data literacy at all levels of society. Responses to data are shaped by personal, social and cultural influences, as well as by trust in the source. The arts can play an important role in regulating our responses to information and increasing accessibility, engagement and sense-making of data. However, to our knowledge, to date, there has been no comprehensive review of publications on the role of the arts in the context of data literacy. This paper presents a protocol and a methodological framework to perform a scoping review to identify and map the available evidence for the role of the arts in enhancing data literacy. The review aims to provide an overview of research over the past twenty years to develop a clearer understanding of (a) which art forms are represented in the literature (b) which population groups and settings are identified (c) and the rationale for using the arts to enhance data literacy.


Assuntos
Idioma , Alfabetização , Humanos , Literatura de Revisão como Assunto
14.
Commun Biol ; 6(1): 51, 2023 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641529

RESUMO

The human pathogen Listeria monocytogenes can cope with severe environmental challenges, for which the high molecular weight stressosome complex acts as the sensing hub in a complicated signal transduction pathway. Here, we show the dynamics and functional roles of the stressosome protein RsbR1 and its paralogue, the blue-light receptor RsbL, using photo-activated localization microscopy combined with single-particle tracking and single-molecule displacement mapping and supported by physiological studies. In live cells, RsbR1 is present in multiple states: in protomers with RsbS, large clusters of stressosome complexes, and in connection with the plasma membrane via Prli42. RsbL diffuses freely in the cytoplasm but forms clusters upon exposure to light. The clustering of RsbL is independent of the presence of Prli42. Our work provides a comprehensive view of the spatial organization and intracellular dynamics of the stressosome proteins in L. monocytogenes, which paves the way towards uncovering the stress-sensing mechanism of this signal transduction pathway.


Assuntos
Listeria monocytogenes , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Microscopia , Transdução de Sinais/fisiologia , Fosfoproteínas/metabolismo
15.
J Phys Chem C Nanomater Interfaces ; 126(49): 21071-21083, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36561202

RESUMO

Wetting of carbon surfaces is one of the most widespread, yet poorly understood, physical phenomena. Control over wetting properties underpins the operation of aqueous energy-storage devices and carbon-based filtration systems. Electrowetting, the variation in the contact angle with an applied potential, is the most straightforward way of introducing control over wetting. Here, we study electrowetting directly on graphitic surfaces with the use of aqueous electrolytes to show that reversible control of wetting can be achieved and quantitatively understood using models of the interfacial capacitance. We manifest that the use of highly concentrated aqueous electrolytes induces a fully symmetric and reversible wetting behavior without degradation of the substrate within the unprecedented potential window of 2.8 V. We demonstrate where the classical "Young-Lippmann" models apply, and break down, and discuss reasons for the latter, establishing relations among the applied bias, the electrolyte concentration, and the resultant contact angle. The approach is extended to electrowetting at the liquid|liquid interface, where a concentrated aqueous electrolyte drives reversibly the electrowetting response of an insulating organic phase with a significantly decreased potential threshold. In summary, this study highlights the beneficial effect of highly concentrated aqueous electrolytes on the electrowettability of carbon surfaces, being directly related to the performance of carbon-based aqueous energy-storage systems and electronic and microfluidic devices.

16.
Access Microbiol ; 4(9): acmi000455, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36415544

RESUMO

Increasing proton concentration in the environment represents a potentially lethal stress for single-celled microorganisms. To survive in an acidifying environment, the foodborne pathogen Listeria monocytogenes quickly activates the alternative sigma factor B (σB), resulting in upregulation of the general stress response (GSR) regulon. Activation of σB is regulated by the stressosome, a multi-protein sensory complex involved in stress detection and signal transduction. In this study, we used L. monocytogenes strains harbouring two stressosome mutants to investigate the role of this complex in triggering expression of known amino acid-based resistance mechanisms in response to low pH. We found that expression of glutamate decarboxylase (gadD3) and arginine and agmatine deiminases (arcA and aguA1, respectively) were upregulated upon acid shock (pH 5 for 15 min) in a stressosome-dependent manner. In contrast, transcription of the arg operons (argGH and argCJBDF), which encode enzymes for the l-arginine biosynthesis pathway, were upregulated upon acid shock in a stressosome-independent manner. Finally, we found that transcription of argR, which encodes a transcriptional regulator of the arc and arg operons, was largely unaffected by acidic shock. Thus, our findings suggest that the stressosome plays a role in activating amino acid-based pH homeostatic mechanisms in L. monocytogenes . Additionally, we show that genes encoding the l-arginine biosynthesis pathway are highly upregulated under acidic conditions, suggesting that intracellular arginine can help withstand environmental acidification in this pathogen.

17.
N Biotechnol ; 72: 64-70, 2022 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-36150650

RESUMO

We present work of our COST Action on "Understanding and exploiting the impacts of low pH on micro-organisms". First, we summarise a workshop held at the European Federation of Biotechnology meeting on Microbial Stress Responses (online in 2020) on "Industrial applications of low pH stress on microbial bio-based production", as an example of an initiative fostering links between pure and applied research. We report the outcomes of a small survey on the challenging topic of developing links between researchers working in academia and industry that show that, while people in different sectors strongly support such links, barriers remain that obstruct this process. We present the thoughts of an expert panel held as part of the workshop above, where people with experience of collaboration between academia and industry shared ideas on how to develop and maintain links. Access to relevant information is essential for research in all sectors, and because of this we have developed, as part of our COST Action goals, two resources for the free use of all researchers with interests in any aspects of microbial responses to low pH. These are (1) a comprehensive database of references in the literature on different aspects of acid stress responses in different bacterial and fungal species, and (2) a database of research expertise across our network. We invite the community of researchers working in this field to take advantage of these resources to identify relevant literature and opportunities for establishing collaborations.


Assuntos
Indústrias , Pesquisadores , Humanos , Bactérias , Biotecnologia , Concentração de Íons de Hidrogênio
18.
Chem Sci ; 13(20): 6089-6097, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35685800

RESUMO

Conductometric gas sensors (CGS) provide a reproducible gas response at a low cost but their operation mechanisms are still not fully understood. In this paper, we elucidate the nature of interactions between SnO2, a common gas-sensitive material, and O2, a ubiquitous gas central to the detection mechanisms of CGS. Using synchrotron radiation, we investigated a working SnO2 sensor under operando conditions via near-ambient pressure (NAP) XPS with simultaneous resistance measurements, and created a depth profile of the variable near-surface stoichiometry of SnO2-x as a function of O2 pressure. Our results reveal a correlation between the dynamically changing surface oxygen vacancies and the resistance response in SnO2-based CGS. While oxygen adsorbates were observed in this study we conclude that these are an intermediary in oxygen transport between the gas phase and the lattice, and that surface oxygen vacancies, not the observed oxygen adsorbates, are central to response generation in SnO2-based gas sensors.

19.
Commun Biol ; 5(1): 621, 2022 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-35760945

RESUMO

The stressosome is a pseudo-icosahedral megadalton bacterial stress-sensing protein complex consisting of several copies of two STAS-domain proteins, RsbR and RsbS, and the kinase RsbT. Upon perception of environmental stress multiple copies of RsbT are released from the surface of the stressosome. Free RsbT activates downstream proteins to elicit a global cellular response, such as the activation of the general stress response in Gram-positive bacteria. The molecular events triggering RsbT release from the stressosome surface remain poorly understood. Here we present the map of Listeria innocua RsbR1/RsbS complex at resolutions of 3.45 Å for the STAS domain core in icosahedral symmetry and of 3.87 Å for the STAS domain and N-terminal sensors in D2 symmetry, respectively. The structure reveals a conformational change in the STAS domain linked to phosphorylation in RsbR. Docking studies indicate that allosteric RsbT binding to the conformationally flexible N-terminal sensor domain of RsbR affects the affinity of RsbS towards RsbT. Our results bring to focus the molecular events within the stressosome complex and further our understanding of this ubiquitous signaling hub.


Assuntos
Bacillus subtilis , Fosfoproteínas , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Fosfoproteínas/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
20.
Appl Environ Microbiol ; 88(11): e0033022, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35583325

RESUMO

The alternative sigma factor B (σB) contributes to the stress tolerance of the foodborne pathogen Listeria monocytogenes by upregulating the general stress response. We previously showed that σB loss-of-function mutations arise frequently in strains of L. monocytogenes and suggested that mild stresses might favor the selection of such mutations. In this study, we performed in vitro evolution experiments (IVEE) where L. monocytogenes was allowed to evolve over 30 days at elevated (42°C) or lower (30°C) incubation temperatures. Isolates purified throughout the IVEE revealed the emergence of sigB operon mutations at 42°C. However, at 30°C, independent alleles in the agr locus arose, resulting in the inactivation of Agr quorum sensing. Colonies of both sigB mutants and agr mutants exhibited a greyer coloration on 7-days-old agar plates than those of the parental strain. Scanning electron microscopy revealed a more complex colony architecture in the wild type than in the mutant strains. sigB mutant strains outcompeted the parental strain at 42°C but not at 30°C, while agr mutant strains showed a small increase in competitive fitness at 30°C. Analysis of 40,080 L. monocytogenes publicly available genome sequences revealed a high occurrence rate of premature stop codons in both the sigB and agrCA loci. An analysis of a local L. monocytogenes strain collection revealed 5 out of 168 strains carrying agrCA alleles. Our results suggest that the loss of σB or Agr confer an increased competitive fitness in some specific conditions and this likely contributes to the emergence of these alleles in strains of L. monocytogenes. IMPORTANCE To withstand environmental aggressions, L. monocytogenes upregulates a large regulon through the action of the alternative sigma factor B (σB). However, σB becomes detrimental for L. monocytogenes growth under mild stresses, which confer a competitive advantage to σB loss-of-function alleles. Temperatures of 42°C, a mild stress, are often employed in mutagenesis protocols of L. monocytogenes and promote the emergence of σB loss-of-function alleles in the sigB operon. In contrast, lower temperatures of 30°C promote the emergence of Agr loss-of-function alleles, a cell-cell communication mechanism in L. monocytogenes. Our findings demonstrate that loss-of-function alleles emerge spontaneously in laboratory-grown strains. These alleles rise in the population as a consequence of the trade-off between growth and survival imposed by the activation of σB in L. monocytogenes. Additionally, our results demonstrate the importance of identifying unwanted hitchhiker mutations in newly constructed mutant strains.


Assuntos
Listeria monocytogenes , Fator sigma , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Regulon , Fator sigma/genética , Fator sigma/metabolismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...