Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Mol Ther Nucleic Acids ; 5(11): e394, 2016 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-27898091

RESUMO

Urea cycle disorders are incurable enzymopathies that affect nitrogen metabolism and typically lead to hyperammonemia. Arginase deficiency results from a mutation in Arg1, the enzyme regulating the final step of ureagenesis and typically results in developmental disabilities, seizures, spastic diplegia, and sometimes death. Current medical treatments for urea cycle disorders are only marginally effective, and for proximal disorders, liver transplantation is effective but limited by graft availability. Advances in human induced pluripotent stem cell research has allowed for the genetic modification of stem cells for potential cellular replacement therapies. In this study, we demonstrate a universally-applicable CRISPR/Cas9-based strategy utilizing exon 1 of the hypoxanthine-guanine phosphoribosyltransferase locus to genetically modify and restore arginase activity, and thus ureagenesis, in genetically distinct patient-specific human induced pluripotent stem cells and hepatocyte-like derivatives. Successful strategies restoring gene function in patient-specific human induced pluripotent stem cells may advance applications of genetically modified cell therapy to treat urea cycle and other inborn errors of metabolism.

2.
Mol Ther Methods Clin Dev ; 3: 16050, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27500178

RESUMO

Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages when expressing a suicide gene if pluripotency remains. However, the human OCT4 promoter region is 4 kb in size, limiting the capacity of therapeutic genes and other regulatory components for viral vectors, and decreasing the efficiency of homologous recombination. The purpose of this investigation was to characterize the functionality of a novel 967bp OCT4-short response element during pluripotency and to examine the OCT4 titer-dependent response during differentiation to human derivatives not expressing OCT4. Our findings demonstrate that the OCT4-short response element is active in pluripotency and this activity is in high correlation with transgene expression in vitro, and the OCT4-short response element is inactivated when pluripotent cells differentiate. These studies demonstrate that this shortened OCT4 regulatory element is functional and may be useful as part of an optimized safety component in a site-specific gene transferring system that could be used as an efficient and clinically applicable safety platform for gene transfer in cellular therapeutics.

3.
Stem Cells Transl Med ; 4(2): 136-45, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25575527

RESUMO

Autologous human induced pluripotent stem cells (hiPSCs) should allow cellular therapeutics without an associated immune response. This concept has been controversial since the original report that syngeneic mouse iPSCs elicited an immune response after transplantation. However, an investigative analysis of any potential acute immune responses in hiPSCs and their derivatives has yet to be conducted. In the present study, we used correlative gene expression analysis of two putative mouse "immunogenicity" genes, ZG16 and HORMAD1, to assay their human homologous expression levels in human pluripotent stem cells and their derivatives. We found that ZG16 expression is heterogeneous across multiple human embryonic stem cell and hiPSC-derived cell types. Additionally, ectopic expression of ZG16 in antigen-presenting cells is insufficient to trigger a detectable response in a peripheral blood mononuclear cell coculture assay. Neither of the previous immunogenicity-associated genes in the mouse currently appears to be relevant in a human context.


Assuntos
Células-Tronco Embrionárias/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Células-Tronco Pluripotentes/imunologia , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Humanos , Lectinas/imunologia , Proteínas de Membrana/imunologia , Camundongos , Células-Tronco Pluripotentes/citologia , Especificidade da Espécie
4.
J Vis Exp ; (93): e52158, 2014 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-25490111

RESUMO

Human induced pluripotent stem cells (hiPSCs) can be generated with lentiviral-based reprogramming methodologies. However, traces of potentially oncogenic genes remaining in actively transcribed regions of the genome, limit their potential for use in human therapeutic applications. Additionally, non-human antigens derived from stem cell reprogramming or differentiation into therapeutically relevant derivatives preclude these hiPSCs from being used in a human clinical context. In this video, we present a procedure for reprogramming and analyzing factor-free hiPSCs free of exogenous transgenes. These hiPSCs then can be analyzed for gene expression abnormalities in the specific intron containing the lentivirus. This analysis may be conducted using sensitive quantitative polymerase chain reaction (PCR), which has an advantage over less sensitive techniques previously used to detect gene expression differences. Full conversion into clinical-grade good manufacturing practice (GMP) conditions, allows human clinical relevance. Our protocol offers another methodology--provided that current safe-harbor criteria will expand and include factor-free characterized hiPSC-based derivatives for human therapeutic applications--for deriving GMP-grade hiPSCs, which should eliminate any immunogenicity risk due to non-human antigens. This protocol is broadly applicable to lentiviral reprogrammed cells of any type and provides a reproducible method for converting reprogrammed cells into GMP-grade conditions.


Assuntos
Técnicas Citológicas/métodos , Células-Tronco Pluripotentes Induzidas/fisiologia , Diferenciação Celular/genética , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Lentivirus/genética , Transgenes
5.
Stem Cell Res Ther ; 5(3): 72, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-25157920

RESUMO

Owing to the aging of the population, our society now faces an impending wave of age-related neurodegenerative pathologies, the most significant of which is Alzheimer's disease. Currently, no effective therapies for Alzheimer's disease have been developed. However, recent advances in the fields of neural stem cells and human induced pluripotent stem cells now provide us with the first real hope for a cure. The recent discovery by Blurton-Jones and colleagues that neural stem cells can effectively deliver disease-modifying therapeutic proteins throughout the brains of our best rodent models of Alzheimer's disease, combined with recent advances in human nuclear reprogramming, stem cell research, and highly customized genetic engineering, may represent a potentially revolutionary personalized cellular therapeutic approach capable of effectively curing, ameliorating, and/or slowing the progression of Alzheimer's disease.


Assuntos
Células-Tronco Neurais/transplante , Doenças Neurodegenerativas/cirurgia , Transplante de Células-Tronco/métodos , Transplante de Células-Tronco/tendências , Doença de Alzheimer/cirurgia , Animais , Humanos
6.
Fertil Steril ; 101(1): 3-13, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24314923

RESUMO

Improved therapies for cancer and other conditions have resulted in a growing population of long-term survivors. Infertility is an unfortunate side effect of some cancer therapies that impacts the quality of life of survivors who are in their reproductive or prereproductive years. Some of these patients have the opportunity to preserve their fertility using standard technologies that include sperm, egg, or embryo banking, followed by IVF and/or ET. However, these options are not available to all patients, especially the prepubertal patients who are not yet producing mature gametes. For these patients, there are several stem cell technologies in the research pipeline that may give rise to new fertility options and allow infertile patients to have their own biological children. We will review the role of stem cells in normal spermatogenesis as well as experimental stem cell-based techniques that may have potential to generate or regenerate spermatogenesis and sperm. We will present these technologies in the context of the fertility preservation paradigm, but we anticipate that they will have broad implications for the assisted reproduction field.


Assuntos
Células-Tronco Adultas/fisiologia , Células Germinativas/fisiologia , Regeneração/fisiologia , Espermatogênese/fisiologia , Células-Tronco Adultas/transplante , Animais , Feminino , Células Germinativas/transplante , Humanos , Masculino , Técnicas de Reprodução Assistida/tendências , Espermatozoides/fisiologia , Espermatozoides/transplante
7.
Mol Genet Metab ; 110(3): 222-30, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23920045

RESUMO

Human arginase deficiency is characterized by hyperargininemia and infrequent episodes of hyperammonemia, which lead to neurological impairment with spasticity, loss of ambulation, seizures, and severe mental and growth retardation; uncommonly, patients suffer early death from this disorder. In a murine targeted knockout model, onset of the phenotypic abnormality is heralded by weight loss at around day 15, and death occurs typically by postnatal day 17 with hyperargininemia and markedly elevated ammonia. This discrepancy between the more attenuated juvenile-onset human disease and the lethal neonatal murine model has remained suboptimal for studying and developing therapy for the more common presentation of arginase deficiency. These investigations aimed to address this issue by creating an adult conditional knockout mouse to determine whether later onset of arginase deficiency also resulted in lethality. Animal survival and ammonia levels, body weight, circulating amino acids, and tissue arginase levels were examined as outcome parameters after widespread Cre-recombinase activation in a conditional knockout model of arginase 1 deficiency. One hundred percent of adult female and 70% of adult male mice died an average of 21.0 and 21.6 days, respectively, after the initiation of tamoxifen administration. Animals demonstrated elevated circulating ammonia and arginine at the onset of phenotypic abnormalities. In addition, brain and liver amino acids demonstrated abnormalities. These studies demonstrate that (a) the absence of arginase in adult animals results in a disease profile (leading to death) similar to that of the targeted knockout and (b) the phenotypic abnormalities seen in the juvenile-onset model are not exclusive to the age of the animal but instead to the biochemistry of the disorder. This adult model will be useful for developing gene- and cell-based therapies for this disorder that will not be limited by the small animal size of neonatal therapy and for developing a better understanding of the characteristics of hyperargininemia.


Assuntos
Genes Letais , Hiperargininemia/genética , Hiperargininemia/metabolismo , Fenótipo , Aminoácidos/sangue , Aminoácidos/metabolismo , Animais , Arginase/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Genótipo , Hiperamonemia/genética , Hiperamonemia/metabolismo , Hiperargininemia/tratamento farmacológico , Hiperargininemia/mortalidade , Rim/efeitos dos fármacos , Rim/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Tamoxifeno/administração & dosagem , Tamoxifeno/farmacologia , Redução de Peso
8.
Stem Cell Res Ther ; 4(4): 87, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23890092

RESUMO

INTRODUCTION: The reprogramming of a patient's somatic cells back into induced pluripotent stem cells (iPSCs) holds significant promise for future autologous cellular therapeutics. The continued presence of potentially oncogenic transgenic elements following reprogramming, however, represents a safety concern that should be addressed prior to clinical applications. The polycistronic stem cell cassette (STEMCCA), an excisable lentiviral reprogramming vector, provides, in our hands, the most consistent reprogramming approach that addresses this safety concern. Nevertheless, most viral integrations occur in genes, and exactly how the integration, epigenetic reprogramming, and excision of the STEMCCA reprogramming vector influences those genes and whether these cells still have clinical potential are not yet known. METHODS: In this study, we used both microarray and sensitive real-time PCR to investigate gene expression changes following both intron-based reprogramming and excision of the STEMCCA cassette during the generation of human iPSCs from adult human dermal fibroblasts. Integration site analysis was conducted using nonrestrictive linear amplification PCR. Transgene-free iPSCs were fully characterized via immunocytochemistry, karyotyping and teratoma formation, and current protocols were implemented for guided differentiation. We also utilized current good manufacturing practice guidelines and manufacturing facilities for conversion of our iPSCs into putative clinical grade conditions. RESULTS: We found that a STEMCCA-derived iPSC line that contains a single integration, found to be located in an intronic location in an actively transcribed gene, PRPF39, displays significantly increased expression when compared with post-excised stem cells. STEMCCA excision via Cre recombinase returned basal expression levels of PRPF39. These cells were also shown to have proper splicing patterns and PRPF39 gene sequences. We also fully characterized the post-excision iPSCs, differentiated them into multiple clinically relevant cell types (including oligodendrocytes, hepatocytes, and cardiomyocytes), and converted them to putative clinical-grade conditions using the same approach previously approved by the US Food and Drug Administration for the conversion of human embryonic stem cells from research-grade to clinical-grade status. CONCLUSION: For the first time, these studies provide a proof-of-principle for the generation of fully characterized transgene-free human iPSCs and, in light of the limited availability of current good manufacturing practice cellular manufacturing facilities, highlight an attractive potential mechanism for converting research-grade cell lines into putatively clinical-grade biologics for personalized cellular therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas/metabolismo , Animais , Diferenciação Celular , Reprogramação Celular , Expressão Gênica , Genômica , Humanos , Camundongos , Transgenes
9.
Cell Reprogram ; 15(2): 126-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23458164

RESUMO

There is mounting evidence to suggest that the epigenetic reprogramming capacity of the oocyte is superior to that of the current factor-based reprogramming approaches and that some factor-reprogrammed induced pluripotent stem cells (iPSCs) retain a degree of epigenetic memory that can influence differentiation capacity and may be linked to the observed expression of immunogenicity genes in iPSC derivatives. One hypothesis for this differential reprogramming capacity is the "chromatin loosening/enhanced reprogramming" concept, as previously described by John Gurdon and Ian Wilmut, as well as others, which postulates that the oocyte possesses factors that loosen the somatic cell chromatin structure, providing the epigenetic and transcriptional regulatory factors more ready access to repressed genes and thereby significantly increasing epigenetic reprogramming. However, to empirically test this hypothesis a list of candidate oocyte reprogramming factors (CORFs) must be ascertained that are significantly expressed in metaphase II oocytes. Previous studies have focused on intraspecies or cross-species transcriptional analysis of up to two different species of oocytes. In this study, we have identified eight CORFs (ARID2, ASF1A, ASF1B, DPPA3, ING3, MSL3, H1FOO, and KDM6B) based on unbiased global transcriptional analysis of oocytes from three different species (human, rhesus monkey, and mouse) that both demonstrate significant (p<0.05, FC>3) expression in oocytes of all three species and have well-established roles in loosening/opening up chromatin structure. We also identified an additional 15 CORFs that fit within our proposed "chromatin opening/fate transformative" (COFT) model. These CORFs may be able to augment Shinya Yamanaka's previously identified reprogramming factors (OCT4, SOX2, KLF4, and cMYC) and potentially facilitate the removal of epigenetic memory in iPSCs and/or reduce the expression of immunogenicity genes in iPSC derivatives, and may have applications in future personalized pluripotent stem cell based therapeutics.


Assuntos
Transdiferenciação Celular , Regulação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/metabolismo , Oócitos/metabolismo , Transcrição Gênica , Animais , Linhagem Celular , Perfilação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Fator 4 Semelhante a Kruppel , Macaca mulatta , Camundongos , Oócitos/citologia , Especificidade da Espécie
10.
Stem Cell Res Ther ; 4(1): 15, 2013 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-23388106

RESUMO

INTRODUCTION: The OCT4 transcription factor is involved in many cellular processes, including development, reprogramming, maintaining pluripotency and differentiation. Synthetic OCT4 mRNA was recently used (in conjunction with other reprogramming factors) to generate human induced pluripotent stem cells. Here, we discovered that BAY 11-7082 (BAY11), at least partially through an NF-κB-inhibition based mechanism, could significantly increase the expression of OCT4 following transfection of synthetic mRNA (synRNA) into adult human skin cells. METHODS: We tested various chemical and molecular small molecules on their ability to suppress the innate immune response seen upon synthetic mRNA transfection. Three molecules - B18R, BX795, and BAY11 - were used in immunocytochemical and proliferation-based assays. We also utilized global transcriptional meta-analysis coupled with quantitative PCR to identify relative gene expression downstream of OCT4. RESULTS: We found that human skin cells cultured in the presence of BAY11 resulted in reproducible increased expression of OCT4 that did not inhibit normal cell proliferation. The increased levels of OCT4 resulted in significantly increased expression of genes downstream of OCT4, including the previously identified SPP1, DUSP4 and GADD45G, suggesting the expressed OCT4 was functional. We also discovered a novel OCT4 putative downstream target gene SLC16A9 which demonstrated significantly increased expression following elevation of OCT4 levels. CONCLUSIONS: For the first time we have shown that small molecule-based stabilization of synthetic mRNA expression can be achieved with use of BAY11. This small molecule-based inhibition of innate immune responses and subsequent robust expression of transfected synthetic mRNAs may have multiple applications for future cell-based research and therapeutics.


Assuntos
Expressão Gênica/efeitos dos fármacos , Nitrilas/farmacologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , RNA Mensageiro/genética , Pele/efeitos dos fármacos , Pele/metabolismo , Sulfonas/farmacologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Células-Tronco Embrionárias/efeitos dos fármacos , Células-Tronco Embrionárias/metabolismo , Expressão Gênica/genética , Humanos , Imunidade Inata/efeitos dos fármacos , Imunidade Inata/genética , Transportadores de Ácidos Monocarboxílicos/genética , Transportadores de Ácidos Monocarboxílicos/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo
11.
Biores Open Access ; 1(1): 25-33, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23514702

RESUMO

Stage-specific embryonic antigen 3 (SSEA3) is a glycosphingolipid that has previously been used to identify cells with stem cell-like, multipotent, and pluripotent characteristics. A rare subpopulation of SSEA3-expressing cells exists in the dermis of adult human skin. These SSEA3-expressing cells undergo a significant increase in cell number in response to injury, suggesting a possible role in regeneration. These SSEA3-expressing regeneration-associated (SERA) cells were derived through primary cell culture, purified by fluorescence-activated cell sorting (FACS), and characterized. Longer in vitro culture of the primary skin cells led to lower SSEA3 expression stability after FACS-based purification, suggesting that the current culture conditions may need to be optimized to permit the large-scale expansion of SERA cells. The SERA cells demonstrated a global transcriptional state that was most similar to bone marrow- and fat-derived mesenchymal stem cells (MSCs), and the highest expressing SSEA3-expressing cells co-expressed CD105 (clone 35). However, while a rare population of MSCs was observed in primary human skin cell cultures that could differentiate into adipocytes, osteoblasts, or chondrocytes, SERA cells did not possess this differentiation capacity, suggesting that there are at least two different rare subpopulations in adult human skin primary cultures. The identification, efficient purification, and large-scale expansion of these rare subpopulations (SERA cells and MSCs) from heterogeneous adult human skin primary cell cultures may have applications for future patient-specific cellular therapies.

12.
PLoS One ; 5(6): e10979, 2010 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-20539753

RESUMO

BACKGROUND: Approximately 20% of oocytes are classified as immature and discarded following intracytoplasmic sperm injection (ICSI) procedures. These oocytes are obtained from gonadotropin-stimulated patients, and are routinely removed from the cumulus cells which normally would mature the oocytes. Given the ready access to these human oocytes, they represent a potential resource for both clinical and basic science application. However culture conditions for the maturation of cumulus-free oocytes have not been optimized. We aimed to improve maturation conditions for cumulus-free oocytes via culture with ovarian paracrine/autocrine factors identified by single cell analysis. METHODOLOGY/PRINCIPAL FINDING: Immature human oocytes were matured in vitro via supplementation with ovarian paracrine/autocrine factors that were selected based on expression of ligands in the cumulus cells and their corresponding receptors in oocytes. Matured oocytes were artificially activated to assess developmental competence. Gene expression profiles of parthenotes were compared to IVF/ICSI embryos at morula and blastocyst stages. Following incubation in medium supplemented with ovarian factors (BDNF, IGF-I, estradiol, GDNF, FGF2 and leptin), a greater percentage of oocytes demonstrated nuclear maturation and subsequently, underwent parthenogenesis relative to control. Similarly, cytoplasmic maturation was also improved as indicated by development to blastocyst stage. Parthenogenic blastocysts exhibited mRNA expression profiles similar to those of blastocysts obtained after IVF/ICSI with the exception for MKLP2 and PEG1. CONCLUSIONS/SIGNIFICANCE: Human cumulus-free oocytes from hormone-stimulated cycles are capable of developing to blastocysts when cultured with ovarian factor supplementation. Our improved IVM culture conditions may be used for obtaining mature oocytes for clinical purposes and/or for derivation of embryonic stem cells following parthenogenesis or nuclear transfer.


Assuntos
Blastocisto/citologia , Células do Cúmulo/citologia , Oócitos/citologia , Partenogênese , Células do Cúmulo/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Oócitos/metabolismo , Ovário/citologia
13.
PLoS One ; 4(9): e7118, 2009 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-19774082

RESUMO

BACKGROUND: The derivation of induced pluripotent stem cells (iPSCs) provides new possibilities for basic research and novel cell-based therapies. Limitations, however, include our current lack of understanding regarding the underlying mechanisms and the inefficiency of reprogramming. METHODOLOGY/PRINCIPAL FINDINGS: Here, we report identification and isolation of a subpopulation of human dermal fibroblasts that express the pluripotency marker stage specific embryonic antigen 3 (SSEA3). Fibroblasts that expressed SSEA3 demonstrated an enhanced iPSC generation efficiency, while no iPSC derivation was obtained from the fibroblasts that did not express SSEA3. Transcriptional analysis revealed NANOG expression was significantly increased in the SSEA3 expressing fibroblasts, suggesting a possible mechanistic explanation for the differential reprogramming. CONCLUSIONS/SIGNIFICANCE: To our knowledge, this study is the first to identify a pluripotency marker in a heterogeneous population of human dermal fibroblasts, to isolate a subpopulation of cells that have a significantly increased propensity to reprogram to pluripotency and to identify a possible mechanism to explain this differential reprogramming. This discovery provides a method to significantly increase the efficiency of reprogramming, enhancing the feasibility of the potential applications based on this technology, and a tool for basic research studies to understand the underlying reprogramming mechanisms.


Assuntos
Fibroblastos/citologia , Células-Tronco Pluripotentes Induzidas/citologia , Pele/patologia , Adulto , Antígenos Glicosídicos Associados a Tumores/metabolismo , Biópsia , Separação Celular , Feminino , Citometria de Fluxo , Humanos , Cariotipagem , Masculino , Microscopia Confocal/métodos , Pessoa de Meia-Idade , Antígenos Embrionários Estágio-Específicos/metabolismo , Transcrição Gênica
14.
Hum Mol Genet ; 17(R1): R37-41, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18632695

RESUMO

The ability to reprogram somatic cell nuclei back into a pluripotent epigenetic state provides exciting new possibilities for in vitro research and cell transplantation therapy. There has been a significant quantity of recent research studies demonstrating that this epigenetic reprogramming process is possible with human and non-human primate somatic cells. In this review, various methodologies for reprogramming primate somatic cells into pluripotent stem cells are examined, epigenetic reprogramming following somatic cell nuclear transfer and normal primate embryonic development is compared, and future potential methods to induce direct reprogramming without using genetic modification are discussed.


Assuntos
Fusão Celular , Reprogramação Celular , Técnicas de Transferência Nuclear , Células-Tronco Pluripotentes/citologia , Animais , Epigênese Genética , Humanos , Células-Tronco Pluripotentes/fisiologia
15.
Biol Reprod ; 75(6): 908-15, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16943365

RESUMO

Embryonic stem cells (ESCs) may be able to cure or alleviate the symptoms of various degenerative diseases. However, unresolved issues regarding survival, functionality, and tumor formation mean a prudent approach should be adopted towards advancing ESCs into human clinical trials. The rhesus monkey provides an ideal model organism for developing strategies to prevent immune rejection and test the feasibility, safety, and efficacy of ESC-based medical treatments. Transcriptional profiling of rhesus monkey ESCs provides a foundation for pre-clinical ESC research in this species. In the present study, we used microarray technology, immunocytochemistry, reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time PCR (qPCR) to characterize and transcriptionally profile rhesus monkey ESCs. We identified 367 stemness gene candidates that were highly (>85%) conserved across five different ESC lines. Rhesus monkey ESC lines maintained a pluripotent undifferentiated state over a wide range of POU5F1 (also known as OCT4) expression levels, and comparisons between rhesus monkey, mouse, and human stemness genes revealed five mammalian stemness genes: CCNB1, GDF3, LEFTB, POU5F1, and NANOG. These five mammalian genes are strongly expressed in rhesus monkey, mouse, and human ESCs, albeit only in the undifferentiated state, and represent the core key mammalian stemness factors.


Assuntos
Células-Tronco Embrionárias/fisiologia , Perfilação da Expressão Gênica , Macaca mulatta , Transcrição Gênica , Animais , Células Cultivadas , Ciclina B/genética , Ciclina B1 , Proteínas de Ligação a DNA/genética , Células-Tronco Embrionárias/citologia , Fator 3 de Diferenciação de Crescimento , Proteínas de Homeodomínio/genética , Humanos , Fatores de Determinação Direita-Esquerda , Camundongos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Fator de Crescimento Transformador beta/genética
16.
Curr Stem Cell Res Ther ; 1(2): 127-38, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-18220862

RESUMO

Embryonic stem cells (ESCs) can proliferate indefinitely, maintain an undifferentiated pluripotent state and differentiate into any cell type. Differentiation of ESCs into various specific cell-types may be able to cure or alleviate the symptoms of various degenerative diseases. Unresolved issues regarding maintaining function, possible apoptosis and tumor formation in vivo mean a prudent approach should be taken towards advancing ESCs into human clinical trials. Rhesus macaques provide the ideal model organism for testing the feasibility, efficacy and safety of ESC based therapies and significant numbers of primate ESC lines are now available. In this review, we will summarize progress in evaluating the genetic and epigenetic integrity of primate ESCs, examine their current use in pre-clinical trials and discuss the potential of producing ESC-derived cell populations that are genetically identical (isogenic) to the host by somatic cell nuclear transfer.


Assuntos
Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/fisiologia , Transplante de Células-Tronco , Animais , Diferenciação Celular , Núcleo Celular/fisiologia , Núcleo Celular/ultraestrutura , Humanos , Mamíferos , Fenótipo , Primatas/genética , Células-Tronco/citologia , Células-Tronco/fisiologia
17.
Curr Biol ; 13(14): 1206-13, 2003 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12867031

RESUMO

Nuclear reprogramming by the transplantation of somatic cell nuclei to eggs (in second meiotic metaphase) is always followed by a phase of chromosome replication and cell division before new gene expression is seen. To help understand the mechanism of nuclear reprogramming, we have asked whether the nuclei of normal, nontransformed, nondividing, and terminally differentiated mammalian cells can be directly reprogrammed, without DNA replication, by Xenopus oocytes. We find that nuclei of adult mouse thymocytes and of adult human blood lymphocytes, injected into Xenopus oocytes, are induced to extinguish a differentiation marker and to strongly express oct-4, the most diagnostic mammalian stem cell/pluripotency marker. In the course of 2 days at 18 degrees C, the mammalian oct-4 transcripts are spliced to mature mRNA. We conclude that normal mammalian nuclei can be directly reprogrammed by the nucleus (germinal vesicle) of amphibian oocytes to express oct-4 at a rate comparable to that of oct-4 in mouse ES cells. To our knowledge, this is the first demonstration of a stem cell marker being induced in a differentiated adult human cell nucleus. This is an early step toward the long-term aim of developing a procedure for reprogramming readily accessible human adult cells for cell replacement therapy.


Assuntos
Diferenciação Celular , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Técnicas de Transferência Nuclear , Oócitos/citologia , Células-Tronco/citologia , Fatores de Transcrição , Animais , Sequência de Bases , Núcleo Celular/genética , Mapeamento Cromossômico , Clonagem de Organismos , Proteínas de Ligação a DNA/fisiologia , Feminino , Humanos , Linfócitos/citologia , Camundongos , Fator 3 de Transcrição de Octâmero , Reação em Cadeia da Polimerase , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...