Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Protein Expr Purif ; 88(1): 93-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23246714

RESUMO

Colony Stimulating Factor-1 (CSF-1) is involved in proliferation, differentiation, and survival of the mononuclear lineage, in development of the female reproductive system and mammary glands during pregnancy and lactation. It is also implicated in the biology of breast cancer and promotion of its metastasis to bones. Therefore, CSF-1 is required for many applications in cellular and molecular biology studies. Commercial products, usually expressed in prokaryotic systems, are costly, with the likelihood of endotoxin contamination and also lack posttranslational modifications. These considerations provide the rationale to express growth factors in eukaryotic systems. In this study, the biologically active and soluble fragment (residues 33-182) of human (CSF-1) was cloned from K562 cell line and expressed in Pichia pastoris. The expression level of the active CSF-1 was about 100 µg/ml of the P. pastoris culture medium. Protein analysis revealed that the expressed CSF-1 appears in three bands with apparent molecular weight of 30, 26 and 20 kDa constituting 44%, 25% and 13% of all proteins in the culture medium, respectively. The expressed protein was partially purified and concentrated (10x) by ultrafiltration, then filter sterilized. The product was confirmed to be biologically active by stimulation of its receptor (FMS) autophosphorylation in THP-1 cells and also growth promotion of factor dependent FDC-P1 cells expressing human wild-type FMS (FD-FMS-WT). Therefore, P. pastoris is a highly efficient and cost-effective expression system for production of endotoxin-free CSF-1 for research and potentially for therapeutic applications.


Assuntos
Expressão Gênica , Fator Estimulador de Colônias de Macrófagos/biossíntese , Fator Estimulador de Colônias de Macrófagos/isolamento & purificação , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Reatores Biológicos , Linhagem Celular , Clonagem Molecular , Humanos , Fator Estimulador de Colônias de Macrófagos/genética , Fosforilação , Pichia
2.
Mol Cancer Ther ; 6(3): 1159-66, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17363509

RESUMO

Certain mutations within c-KIT cause constitutive activation of the receptor and have been associated with several human malignancies. These include gastrointestinal stromal tumors (GIST), mastocytosis, acute myelogenous leukemia, and germ cell tumors. The kinase inhibitor imatinib potently inhibits c-KIT and is approved for treatment of GIST. However, secondary point mutations can develop within the kinase domain to confer resistance to imatinib and cause drug-resistant relapse. A common mutation, which results in a V654A substitution, has been documented in imatinib-resistant GIST patients. We expressed c-KIT cDNA constructs encoding the V654A substitution alone and in combination with a typical activating exon 11 mutation characteristic of GIST, V560G, in factor-dependent FDC-P1 cells. The V654A substitution alone resulted in enhanced proliferation in c-KIT ligand (stem cell factor) but not factor independence. Cells expressing the double mutant were, like those expressing single V560G mutant c-KIT, factor independent. Analysis of cellular proliferation in the presence of imatinib showed that the V654A substitution alone conferred resistance. The difference in sensitivity was especially pronounced for cells expressing single mutant V560G c-KIT compared with double mutant V560G/V654A c-KIT. The findings were supported by studies of c-KIT phosphorylation. Analysis of the crystal structure of imatinib in complex with the kinase domain of c-KIT predicts that the V654A substitution directly affects the binding of imatinib to the receptor. Alternative c-KIT inhibitors, nilotinib (AMN107) and PKC412, were also less active on V560G/V654A c-KIT than on the V560G single mutant; however, nilotinib, like imatinib, potently inhibited the V560G mutant. PKC412 strongly inhibited imatinib-resistant D816V c-KIT.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos , Tumores do Estroma Gastrointestinal/genética , Mutação/genética , Piperazinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Pirimidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzamidas , Proliferação de Células/efeitos dos fármacos , Células Cultivadas/efeitos dos fármacos , Éxons/genética , Imunofluorescência , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/metabolismo , Humanos , Mesilato de Imatinib , Imunoprecipitação , Camundongos , Células Progenitoras Mieloides/efeitos dos fármacos , Células Progenitoras Mieloides/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Estaurosporina/análogos & derivados , Estaurosporina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA