Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
IEEE Trans Microw Theory Tech ; 67(5): 1717-1726, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31423023

RESUMO

In magnetic resonance imaging (MRI), wearable wireless receive coil arrays are a key technology goal. An MRI compatible wireless power transfer (WPT) system will be needed to realize this technology. An MRI WPT system must withstand the extreme electromagnetic environment of the scanner and cannot degrade MRI image quality. Here, a WPT system is developed for operation in MRI scanners using new microelectromechanical RF switch (RF MEMs) technology. The WPT system includes a class-E power amplifier, RF MEMs automated impedance matching, a primary coil array employing RF MEMs power steering, and a flexible secondary coil with class E rectification. To adapt WPT technology to MRI, techniques are developed for operation at high magnetic field, and to mitigate the RF interactions between the scanner and WPT system. A major challenge was the identification and suppression of noise and harmonic interference, by gating, filtering, and rectifier topologies. The system can achieve 63% efficiency while exceeding 13 W delivery over a coil distance of 3.5 cm. For continuous WPT beyond 5W, added filters and full-wave class E rectification lowers harmonic generation at some cost to efficiency, while image SNR reaches about 32% of the ideal. RF-gated WPT, which interrupts power transfer in the MRI signal acquisition interval, achieves SNR performance to within 1 dB of the ideal. With further refinement, the inclusion of WPT technology in MRI scanners appears completely feasible.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31057343

RESUMO

In MRI systems, cable-free receive arrays would simplify setup while reducing the bulk and weight of coil arrays and improve patient comfort and throughput. Since battery power would limit scan time, wireless power transfer (WPT) is a viable option to continuously supply several watts of power to on-coil electronics. To minimize added noise and decouple the wireless power system from MRI coils, restrictions are placed on the coil geometry of the wireless power system, which are shown to limit its efficiency. Continuous power harvesting can also cause a large increase in the background noise of the image due to diode rectifier up-conversion of noise around the frequency of the transmitted power. However, by RF gating the transmitted power off during the MRI receive time while continuing to supply power from a storage capacitor, WPT is demonstrated to have minimal impact on image quality at received power levels up to 11 W. The integration of WPT with a 1.5T scanner is demonstrated.

3.
Artigo em Inglês | MEDLINE | ID: mdl-24109773

RESUMO

Transcutaneous energy transmission systems (TETS) wirelessly transmit power through the skin. TETS is particularly desirable for ventricular assist devices (VAD), which currently require cables through the skin to power the implanted pump. Optimizing the inductive link of the TET system is a multi-parameter problem. Most current techniques to optimize the design simplify the problem by combining parameters leading to sub-optimal solutions. In this paper we present an optimization method using a genetic algorithm to handle a larger set of parameters, which leads to a more optimal design. Using this approach, we were able to increase efficiency while also reducing power variability in a prototype, compared to a traditional manual design method.


Assuntos
Coração Auxiliar , Algoritmos , Fontes de Energia Elétrica , Humanos , Modelos Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...