Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 50(19): 11109-11127, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36200825

RESUMO

Mobile genetic elements control their life cycles by the expression of a master repressor, whose function must be disabled to allow the spread of these elements in nature. Here, we describe an unprecedented repression-derepression mechanism involved in the transfer of Staphylococcus aureus pathogenicity islands (SaPIs). Contrary to the classical phage and SaPI repressors, which are dimers, the SaPI1 repressor StlSaPI1 presents a unique tetrameric conformation never seen before. Importantly, not just one but two tetramers are required for SaPI1 repression, which increases the novelty of the system. To derepress SaPI1, the phage-encoded protein Sri binds to and induces a conformational change in the DNA binding domains of StlSaPI1, preventing the binding of the repressor to its cognate StlSaPI1 sites. Finally, our findings demonstrate that this system is not exclusive to SaPI1 but widespread in nature. Overall, our results characterize a novel repression-induction system involved in the transfer of MGE-encoded virulence factors in nature.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Ilhas Genômicas/genética , Fagos de Staphylococcus/genética , Staphylococcus aureus/genética
2.
Acta Crystallogr F Struct Biol Commun ; 76(Pt 9): 414-421, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32880589

RESUMO

The bifunctional alcohol/aldehyde dehydrogenase (AdhE) comprises both an N-terminal aldehyde dehydrogenase (AldDH) and a C-terminal alcohol dehydrogenase (ADH). In vivo, full-length AdhE oligomerizes into long oligomers known as spirosomes. However, structural analysis of AdhE is challenging owing to the heterogeneity of the spirosomes. Therefore, the domains of AdhE are best characterized separately. Here, the structure of ADH from the pathogenic Escherichia coli O157:H7 was determined to 1.65 Šresolution. The dimeric crystal structure was confirmed in solution by small-angle X-ray scattering.


Assuntos
Álcool Desidrogenase/química , Aldeído Oxirredutases/química , Escherichia coli O157/enzimologia , Proteínas de Escherichia coli/química , Ferro/química , NAD/química , Subunidades Proteicas/química , Álcool Desidrogenase/genética , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/genética , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , Cátions Bivalentes , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli O157/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ferro/metabolismo , Modelos Moleculares , NAD/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
3.
Commun Biol ; 3(1): 298, 2020 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-32523125

RESUMO

Aldehyde-alcohol dehydrogenase (AdhE) is an enzyme responsible for converting acetyl-CoA to ethanol via acetaldehyde using NADH. AdhE is composed of two catalytic domains of aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH), and forms a spirosome architecture critical for AdhE activity. Here, we present the atomic resolution (3.43 Å) cryo-EM structure of AdhE spirosomes in an extended conformation. The cryo-EM structure shows that AdhE spirosomes undergo a structural transition from compact to extended forms, which may result from cofactor binding. This transition leads to access to a substrate channel between ALDH and ADH active sites. Furthermore, prevention of this structural transition by crosslinking hampers the activity of AdhE, suggesting that the structural transition is important for AdhE activity. This work provides a mechanistic understanding of the regulation mechanisms of AdhE activity via structural transition, and a platform to modulate AdhE activity for developing antibiotics and for facilitating biofuel production.


Assuntos
Álcool Desidrogenase/química , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/química , Aldeído Oxirredutases/metabolismo , Aldeídos/metabolismo , Microscopia Crioeletrônica/métodos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Etanol/metabolismo , Organelas/metabolismo , Cristalografia por Raios X , Escherichia coli/genética , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato
4.
EMBO J ; 39(7): e103234, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32134144

RESUMO

Centromeres are microtubule attachment sites on chromosomes defined by the enrichment of histone variant CENP-A-containing nucleosomes. To preserve centromere identity, CENP-A must be escorted to centromeres by a CENP-A-specific chaperone for deposition. Despite this essential requirement, many eukaryotes differ in the composition of players involved in centromere maintenance, highlighting the plasticity of this process. In humans, CENP-A recognition and centromere targeting are achieved by HJURP and the Mis18 complex, respectively. Using X-ray crystallography, we here show how Drosophila CAL1, an evolutionarily distinct CENP-A histone chaperone, binds both CENP-A and the centromere receptor CENP-C without the requirement for the Mis18 complex. While an N-terminal CAL1 fragment wraps around CENP-A/H4 through multiple physical contacts, a C-terminal CAL1 fragment directly binds a CENP-C cupin domain dimer. Although divergent at the primary structure level, CAL1 thus binds CENP-A/H4 using evolutionarily conserved and adaptive structural principles. The CAL1 binding site on CENP-C is strategically positioned near the cupin dimerisation interface, restricting binding to just one CAL1 molecule per CENP-C dimer. Overall, by demonstrating how CAL1 binds CENP-A/H4 and CENP-C, we provide key insights into the minimalistic principles underlying centromere maintenance.


Assuntos
Proteína Centromérica A/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Centrômero/química , Centrômero/metabolismo , Cristalografia por Raios X , Proteínas de Drosophila/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutação , Ligação Proteica
5.
Nat Commun ; 10(1): 4527, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31586059

RESUMO

Aldehyde-alcohol dehydrogenase (AdhE) is a key enzyme in bacterial fermentation, converting acetyl-CoA to ethanol, via two consecutive catalytic reactions. Here, we present a 3.5 Å resolution cryo-EM structure of full-length AdhE revealing a high-order spirosome architecture. The structure shows that the aldehyde dehydrogenase (ALDH) and alcohol dehydrogenase (ADH) active sites reside at the outer surface and the inner surface of the spirosome respectively, thus topologically separating these two activities. Furthermore, mutations disrupting the helical structure abrogate enzymatic activity, implying that formation of the spirosome structure is critical for AdhE activity. In addition, we show that this spirosome structure undergoes conformational change in the presence of cofactors. This work presents the atomic resolution structure of AdhE and suggests that the high-order helical structure regulates its enzymatic activity.


Assuntos
Álcool Desidrogenase/ultraestrutura , Aldeído Oxirredutases/ultraestrutura , Proteínas de Escherichia coli/ultraestrutura , Acetilcoenzima A/química , Álcool Desidrogenase/isolamento & purificação , Álcool Desidrogenase/metabolismo , Aldeído Oxirredutases/isolamento & purificação , Aldeído Oxirredutases/metabolismo , Microscopia Crioeletrônica , Ensaios Enzimáticos , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Etanol/química , Mutação , Conformação Proteica em alfa-Hélice/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestrutura
6.
Nature ; 565(7739): 377-381, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30626974

RESUMO

To initiate infection, many viruses enter their host cells by triggering endocytosis following receptor engagement. However, the mechanisms by which non-enveloped viruses escape the endosome are poorly understood. Here we present near-atomic-resolution cryo-electron microscopy structures for feline calicivirus both undecorated and labelled with a soluble fragment of its cellular receptor, feline junctional adhesion molecule A. We show that VP2, a minor capsid protein encoded by all caliciviruses1,2, forms a large portal-like assembly at a unique three-fold axis of symmetry, following receptor engagement. This assembly-which was not detected in undecorated virions-is formed of twelve copies of VP2, arranged with their hydrophobic N termini pointing away from the virion surface. Local rearrangement at the portal site leads to the opening of a pore in the capsid shell. We hypothesize that the portal-like assembly functions as a channel for the delivery of the calicivirus genome, through the endosomal membrane, into the cytoplasm of a host cell, thereby initiating infection. VP2 was previously known to be critical for the production of infectious virus3; our findings provide insights into its structure and function that advance our understanding of the Caliciviridae.


Assuntos
Calicivirus Felino/metabolismo , Calicivirus Felino/ultraestrutura , Proteínas do Capsídeo/metabolismo , Proteínas do Capsídeo/ultraestrutura , Microscopia Crioeletrônica , Molécula A de Adesão Juncional/ultraestrutura , Receptores Virais/ultraestrutura , Montagem de Vírus , Animais , Calicivirus Felino/química , Calicivirus Felino/crescimento & desenvolvimento , Proteínas do Capsídeo/química , Gatos , Linhagem Celular , Endossomos/metabolismo , Endossomos/virologia , Genoma Viral , Interações Hidrofóbicas e Hidrofílicas , Molécula A de Adesão Juncional/química , Molécula A de Adesão Juncional/metabolismo , Modelos Moleculares , Receptores Virais/química , Receptores Virais/metabolismo , Eletricidade Estática , Vírion/química , Vírion/genética , Vírion/metabolismo , Vírion/ultraestrutura
7.
Eur Biophys J ; 47(7): 693-696, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30218114

RESUMO

Analytical ultracentrifugation (AUC) remains a highly versatile and widely applicable tool for the analysis of macromolecules and their interactions. The current state-of-the-art was demonstrated at a recent international meeting held in Glasgow, Scotland, in July 2017, the 23rd International Analytical Ultracentrifugation Workshop and Symposium. This special issue showcases the reports made at the meeting, which concerned the application of AUC to a wide range of topics in biochemical and polymer science including antibody and membrane protein characterisation, and protein-carbohydrate interactions. Presentations on development and testing of new instrumentation and methods of analysis were a particular feature of the meeting, including the optimisation of experimental protocols, and the latest optimised computational approaches to experimental simulation and the modelling of macromolecular structures.


Assuntos
Ultracentrifugação , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo
8.
J Phys Chem Lett ; 9(14): 3910-3914, 2018 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-29939747

RESUMO

In-solution small-angle X-ray and neutron scattering (SAXS/SANS) have become popular methods to characterize the structure of membrane proteins, solubilized by either detergents or nanodiscs. SANS studies of protein-detergent complexes usually require deuterium-labeled proteins or detergents, which in turn often lead to problems in their expression or purification. Here, we report an approach whose novelty is the combined analysis of SAXS and SANS data from an unlabeled membrane protein complex in solution in two complementary ways. First, an explicit atomic analysis, including both protein and detergent molecules, using the program WAXSiS, which has been adapted to predict SANS data. Second, the use of MONSA which allows one to discriminate between detergent head- and tail-groups in an ab initio approach. Our approach is readily applicable to any detergent-solubilized protein and provides more detailed structural information on protein-detergent complexes from unlabeled samples than SAXS or SANS alone.


Assuntos
Técnicas de Química Analítica/métodos , Detergentes/química , Proteínas de Membrana/química , Difração de Nêutrons , Difração de Raios X , Simulação de Dinâmica Molecular , Solubilidade
9.
J Biol Chem ; 293(26): 10071-10083, 2018 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-29764934

RESUMO

The histone chaperone complex facilitates chromatin transcription (FACT) plays important roles in DNA repair, replication, and transcription. In the formation of this complex, structure-specific recognition protein-1 (SSRP1) heterodimerizes with suppressor of Ty 16 (SPT16). SSRP1 also has SPT16-independent functions, but how SSRP1 functions alone remains elusive. Here, using analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) techniques, we characterized human SSRP1 and that from the amoeba Dictyostelium discoideum and show that both orthologs form an elongated homodimer in solution. We found that substitutions in the SSRP1 pleckstrin homology domain known to bind SPT16 also disrupt SSRP1 homodimerization. Moreover, AUC and SAXS analyses revealed that SSRP1 homodimerization and heterodimerization with SPT16 (resulting in FACT) involve the same SSRP1 surface, namely the PH2 region, and that the FACT complex contains only one molecule of SSRP1. These observations suggest that SSRP1 homo- and heterodimerization might be mutually exclusive. Moreover, isothermal titration calorimetry analyses disclosed that SSRP1 binds both histones H2A-H2B and H3-H4 and that disruption of SSRP1 homodimerization decreases its histone-binding affinity. Together, our results provide evidence for regulation of SSRP1 by homodimerization and suggest a potential role for homodimerization in facilitating SPT16-independent functions of SSRP1.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Grupo de Alta Mobilidade/química , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histonas/metabolismo , Multimerização Proteica , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/metabolismo , Sequência de Aminoácidos , Dictyostelium , Humanos , Ligação Proteica , Domínios Proteicos , Estrutura Quaternária de Proteína
10.
Subcell Biochem ; 83: 523-550, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28271489

RESUMO

The family of 2-oxoacid dehydrogenase complexes (2-OADC), typified by the pyruvate dehydrogenase multi-enzyme complex (PDC) as its most prominent member, are massive molecular machines (Mr, 4-10 million) controlling key steps in glucose homeostasis (PDC), citric acid cycle flux (OGDC, 2-oxoglutarate dehydrogenase) and the metabolism of the branched-chain amino acids, leucine, isoleucine and valine (BCOADC, branched-chain 2-OADC). These highly organised mitochondrial arrays, composed of multiple copies of three separate enzymes, have been widely studied as paradigms for the analysis of enzyme cooperativity, substrate channelling, protein-protein interactions and the regulation of activity by phosphorylation . This chapter will highlight recent advances in our understanding of the structure-function relationships, the overall organisation and the transport and assembly of PDC in particular, focussing on both native and recombinant forms of the complex and their individual components or constituent domains. Biophysical approaches, including X-ray crystallography (MX), nuclear magnetic resonance spectroscopy (NMR), cryo-EM imaging, analytical ultracentrifugation (AUC) and small angle X-ray and neutron scattering (SAXS and SANS), have all contributed significant new information on PDC subunit organisation, stoichiometry, regulatory mechanisms and mode of assembly. Moreover, the recognition of specific genetic defects linked to PDC deficiency, in combination with the ability to analyse recombinant PDCs housing both novel naturally-occurring and engineered mutations, have all stimulated renewed interest in these classical metabolic assemblies. In addition, the role played by PDC, and its constituent proteins, in certain disease states will be briefly reviewed, focussing on the development of new and exciting areas of medical and immunological research.


Assuntos
Doença , Saúde , Complexo Piruvato Desidrogenase/química , Complexo Piruvato Desidrogenase/metabolismo , Humanos
11.
Front Microbiol ; 7: 1930, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27965652

RESUMO

Infections caused by Shiga toxin (Stx)-producing E. coli strains constitute a health problem, as they are problematic to treat. Stx production is a key virulence factor associated with the pathogenicity of enterohaemorrhagic E. coli (EHEC) and can result in the development of haemolytic uremic syndrome in infected patients. The genes encoding Stx are located on temperate lysogenic phages integrated into the bacterial chromosome and expression of the toxin is generally coupled to phage induction through the SOS response. We aimed to find new compounds capable of blocking expression of Stx type 2 (Stx2) as this subtype of Stx is more strongly associated with human disease. High-throughput screening of a small-molecule library identified a lead compound that reduced Stx2 expression in a dose-dependent manner. We show that the optimized compound interferes with the SOS response by directly affecting the activity and oligomerization of RecA, thus limiting phage activation and Stx2 expression. Our work suggests that RecA is highly susceptible to inhibition and that targeting this protein is a viable approach to limiting production of Stx2 by EHEC. This type of approach has the potential to limit production and transfer of other phage induced and transduced determinants.

12.
Nat Commun ; 7: 13308, 2016 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-27796364

RESUMO

Iron is a limiting nutrient in bacterial infection putting it at the centre of an evolutionary arms race between host and pathogen. Gram-negative bacteria utilize TonB-dependent outer membrane receptors to obtain iron during infection. These receptors acquire iron either in concert with soluble iron-scavenging siderophores or through direct interaction and extraction from host proteins. Characterization of these receptors provides invaluable insight into pathogenesis. However, only a subset of virulence-related TonB-dependent receptors have been currently described. Here we report the discovery of FusA, a new class of TonB-dependent receptor, which is utilized by phytopathogenic Pectobacterium spp. to obtain iron from plant ferredoxin. Through the crystal structure of FusA we show that binding of ferredoxin occurs through specialized extracellular loops that form extensive interactions with ferredoxin. The function of FusA and the presence of homologues in clinically important pathogens suggests that small iron-containing proteins represent an iron source for bacterial pathogens.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Bactérias/química , Ferredoxinas/química , Ferro/química , Proteínas de Membrana/química , Pectobacterium/química , Fator G para Elongação de Peptídeos/química , Cristalografia por Raios X , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas Ferro-Enxofre/química , Espectroscopia de Ressonância Magnética , Fases de Leitura Aberta , Filogenia , Ligação Proteica , Domínios Proteicos
13.
Biochem J ; 473(18): 2799-812, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27402794

RESUMO

Protein antibiotics (bacteriocins) are a large and diverse family of multidomain toxins that kill specific Gram-negative bacteria during intraspecies competition for resources. Our understanding of the mechanism of import of such potent toxins has increased significantly in recent years, especially with the reporting of several structures of bacteriocin domains. Less well understood is the structural biochemistry of intact bacteriocins and how these compare across bacterial species. Here, we focus on endonuclease (DNase) bacteriocins that target the genomes of Escherichia coli and Pseudomonas aeruginosa, known as E-type colicins and S-type pyocins, respectively, bound to their specific immunity (Im) proteins. First, we report the 3.2 Šstructure of the DNase colicin ColE9 in complex with its ultra-high affinity Im protein, Im9. In contrast with Im3, which when bound to the ribonuclease domain of the homologous colicin ColE3 makes contact with the translocation (T) domain of the toxin, we find that Im9 makes no such contact and only interactions with the ColE9 cytotoxic domain are observed. Second, we report small-angle X-ray scattering data for two S-type DNase pyocins, S2 and AP41, into which are fitted recently determined X-ray structures for isolated domains. We find that DNase pyocins and colicins are both highly elongated molecules, even though the order of their constituent domains differs. We discuss the implications of these architectural similarities and differences in the context of the translocation mechanism of protein antibiotics through the cell envelope of Gram-negative bacteria.


Assuntos
Antibacterianos/química , Endonucleases/química , Sequência de Aminoácidos , Biofísica , Conformação Proteica , Homologia de Sequência de Aminoácidos
14.
Biochem J ; 473(15): 2345-58, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27252387

RESUMO

Increasing rates of antibiotic resistance among Gram-negative pathogens such as Pseudomonas aeruginosa means alternative approaches to antibiotic development are urgently required. Pyocins, produced by P. aeruginosa for intraspecies competition, are highly potent protein antibiotics known to actively translocate across the outer membrane of P. aeruginosa. Understanding and exploiting the mechanisms by which pyocins target, penetrate and kill P. aeruginosa is a promising approach to antibiotic development. In this work we show the therapeutic potential of a newly identified tRNase pyocin, pyocin SD2, by demonstrating its activity in vivo in a murine model of P. aeruginosa lung infection. In addition, we propose a mechanism of cell targeting and translocation for pyocin SD2 across the P. aeruginosa outer membrane. Pyocin SD2 is concentrated at the cell surface, via binding to the common polysaccharide antigen (CPA) of P. aeruginosa lipopolysaccharide (LPS), from where it can efficiently locate its outer membrane receptor FpvAI. This strategy of utilizing both the CPA and a protein receptor for cell targeting is common among pyocins as we show that pyocins S2, S5 and SD3 also bind to the CPA. Additional data indicate a key role for an unstructured N-terminal region of pyocin SD2 in the subsequent translocation of the pyocin into the cell. These results greatly improve our understanding of how pyocins target and translocate across the outer membrane of P. aeruginosa. This knowledge could be useful for the development of novel anti-pseudomonal therapeutics and will also support the development of pyocin SD2 as a therapeutic in its own right.


Assuntos
Antibacterianos/isolamento & purificação , Pseudomonas aeruginosa/química , Piocinas/isolamento & purificação , Animais , Antibacterianos/química , Antibacterianos/farmacologia , Dicroísmo Circular , Clonagem Molecular , Pneumopatias/tratamento farmacológico , Camundongos , Piocinas/química , Piocinas/farmacologia , Espalhamento a Baixo Ângulo , Espectrofotometria Ultravioleta , Difração de Raios X
15.
Structure ; 24(5): 741-749, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27112601

RESUMO

Escherichia coli possesses a number of specific K(+) influx and efflux systems that maintain an appropriate intracellular K(+) concentration. Although regulatory mechanisms have been identified for a number of these transport systems, the exact mechanism through which K(+) concentration is sensed in the cell remains unknown. In this work we show that Kbp (K(+) binding protein, formerly YgaU), a soluble 16-kDa cytoplasmic protein from Escherichia coli, is a highly specific K(+) binding protein and is required for normal growth in the presence of high levels of external K(+). Kbp binds a single potassium ion with high specificity over Na(+) and other metal ions found in biological systems, although, in common with K(+) transporters, it also binds Rb(+) and Cs(+). Dissection of the K(+) binding determinants of Kbp suggests a mechanism through which Kbp is able to sense changes in K(+) concentration over the relevant range of intracellular K(+) concentrations.


Assuntos
Proteínas de Escherichia coli/química , Potássio/metabolismo , Sítios de Ligação , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Sódio/metabolismo
16.
Curr Opin Struct Biol ; 35: 76-86, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26496626

RESUMO

Responsive formation of protein:protein interaction (PPI) upon diverse stimuli is a fundament of cellular function. As a consequence, PPIs are complex, adaptive entities, and exist in structurally heterogeneous interplays defined by the energetic states of the free and complexed protomers. The biophysical and structural investigations of PPIs consequently demand hybrid approaches, implementing orthogonal methods and strategies for global data analysis. Currently, impressive developments in hardware and software within several methodologies define a new era for the biostructural community. Data can be obtained at increasing resolution, at relevant time-scales and under increasingly relevant experimental conditions, intricate data are interpreted reliably, and the questions posed and answered grow in complexity. With this review, highlights from the study of PPIs using a multitude of biophysical methods, are reported. The aim is to depict how the elucidation of the interplay of structures requires the interplay of methods.


Assuntos
Biofísica/métodos , Mapeamento de Interação de Proteínas/métodos , Proteínas/química , Proteínas/metabolismo , Regulação Alostérica , Multimerização Proteica
17.
Methods Enzymol ; 562: 81-108, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412648

RESUMO

The hydrodynamic parameters measured in an AUC experiment, s(20,w) and D(t)(20,w)(0), can be used to gain information on the solution structure of (bio)macromolecules and their assemblies. This entails comparing the measured parameters with those that can be computed from usually "dry" structures by "hydrodynamic modeling." In this chapter, we will first briefly put hydrodynamic modeling in perspective and present the basic physics behind it as implemented in the most commonly used methods. The important "hydration" issue is also touched upon, and the distinction between rigid bodies versus those for which flexibility must be considered in the modeling process is then made. The available hydrodynamic modeling/computation programs, HYDROPRO, BEST, SoMo, AtoB, and Zeno, the latter four all implemented within the US-SOMO suite, are described and their performance evaluated. Finally, some literature examples are presented to illustrate the potential applications of hydrodynamics in the expanding field of multiresolution modeling.


Assuntos
Substâncias Macromoleculares/isolamento & purificação , Algoritmos , Hidrodinâmica , Substâncias Macromoleculares/química , Modelos Químicos , Modelos Moleculares , Peso Molecular , Software , Soluções , Ultracentrifugação/métodos
18.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 7): 1478-86, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26143919

RESUMO

Bacterial α-2-macroglobulins have been suggested to function in defence as broad-spectrum inhibitors of host proteases that breach the outer membrane. Here, the X-ray structure of protease-cleaved Escherichia coli α-2-macroglobulin is described, which reveals a putative mechanism of activation and conformational change essential for protease inhibition. In this competitive mechanism, protease cleavage of the bait-region domain results in the untethering of an intrinsically disordered region of this domain which disrupts native interdomain interactions that maintain E. coli α-2-macroglobulin in the inactivated form. The resulting global conformational change results in entrapment of the protease and activation of the thioester bond that covalently links to the attacking protease. Owing to the similarity in structure and domain architecture of Escherichia coli α-2-macroglobulin and human α-2-macroglobulin, this protease-activation mechanism is likely to operate across the diverse members of this group.


Assuntos
Escherichia coli/química , Escherichia coli/metabolismo , Elastase Pancreática/metabolismo , alfa-Macroglobulinas/química , alfa-Macroglobulinas/metabolismo , Sequência de Aminoácidos , Animais , Cristalografia por Raios X , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Alinhamento de Sequência , Suínos
20.
J Mol Biol ; 427(17): 2852-66, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26215615

RESUMO

How ultra-high-affinity protein-protein interactions retain high specificity is still poorly understood. The interaction between colicin DNase domains and their inhibitory immunity (Im) proteins is an ultra-high-affinity interaction that is essential for the neutralisation of endogenous DNase catalytic activity and for protection against exogenous DNase bacteriocins. The colicin DNase-Im interaction is a model system for the study of high-affinity protein-protein interactions. However, despite the fact that closely related colicin-like bacteriocins are widely produced by Gram-negative bacteria, this interaction has only been studied using colicins from Escherichia coli. In this work, we present the first crystal structures of two pyocin DNase-Im complexes from Pseudomonas aeruginosa, pyocin S2 DNase-ImS2 and pyocin AP41 DNase-ImAP41. These structures represent divergent DNase-Im subfamilies and are important in extending our understanding of protein-protein interactions for this important class of high-affinity protein complex. A key finding of this work is that mutations within the immunity protein binding energy hotspot, helix III, are tolerated by complementary substitutions at the DNase-Immunity protein binding interface. Im helix III is strictly conserved in colicins where an Asp forms polar interactions with the DNase backbone. ImAP41 contains an Asp-to-Gly substitution in helix III and our structures show the role of a co-evolved substitution where Pro in DNase loop 4 occupies the volume vacated and removes the unfulfilled hydrogen bond. We observe the co-evolved mutations in other DNase-Immunity pairs that appear to underpin the split of this family into two distinct groups.


Assuntos
Complexos Multiproteicos/ultraestrutura , Pseudomonas aeruginosa/metabolismo , Piocinas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Colicinas/metabolismo , Cristalografia por Raios X , Desoxirribonucleases/metabolismo , Desoxirribonucleases/ultraestrutura , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação , Filogenia , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Terciária de Proteína/genética , Pseudomonas aeruginosa/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...