Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Noncoding RNA Res ; 9(3): 876-886, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38586313

RESUMO

Although rare, there is ongoing research into biomarkers that predict the onset and recurrence of gastric cancer, particularly focusing on substances found in exosomes. Long non-coding RNAs (lncRNAs) have garnered attention for their potential in diagnosing gastric cancer. This study investigates the role of lncRNAs in gastric cancer, focusing on their presence in exosomes as potential biomarkers for the disease's onset and recurrence. We utilized the ArrayStar Human LncRNA array 2.0 to analyze lncRNA expression in tissues from early-stage gastric cancer patients. Our analysis highlighted LINC00853, which was significantly upregulated in cancer tissues and implicated in promoting epithelial-mesenchymal transition via the MAP17/PDZK1/AKT pathway. Functional studies on AGS and MKN74 gastric cancer cell lines demonstrated that LINC00853 facilitates cell proliferation, invasion, and migration. Additionally, RNA immunoprecipitation and electrophoretic mobility shift assays confirmed LINC00853 interaction with MAP17. Importantly, LINC00853 was also detected in exosomes from both patient samples and cell lines, and its downregulation led to decreased tumorigenicity in AGS cells. These findings suggest that both cellular and exosomal LINC00853 contribute to gastric cancer pathogenesis and may serve as valuable biomarkers for the disease.

2.
Yonsei Med J ; 62(2): 118-128, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33527791

RESUMO

PURPOSE: HOX transcript antisense intergenic RNA (HOTAIR), as a long non-coding RNA, has been reported to regulate carcinogenesis by epigenetic mechanism in various cancers. Protocadherin 10 (PCDH10) is one of the well-known tumor suppressor genes, and is frequently methylated in gastric cancers (GC). We aimed to investigate the detailed pathway of how HOTAIR contributes to the target gene in gastric carcinogenesis. MATERIALS AND METHODS: We investigated the mechanism of HOTAIR on carcinogenesis and metastasis of GC. Methylation-specific PCR was performed to identify the interaction between HOTAIR and PCDH10. In addition, we investigated the interaction between miR-148b and HOTAIR by dual-luciferase reporter assay and RNA immunoprecipitation (RIP) assay. RESULTS: The expression of HOTAIR was significantly upregulated in GC tissues (p<0.05) and GC cell lines (p<0.01), while PCDH10 was downregulated in GC tissues (p<0.05). The knockdown of HOTAIR (si-HOTAIR1 and 2) significantly upregulated the mRNA/protein expression of PCDH10 and reduced the methylation of PCDH10 compared to the control in MKN 28 and MKN 74. Si-HOTAIR1 and 2 significantly reduced DNA methyltransferase 1 (DNMT1) expression, and overexpression of HOTAIR increased DNMT1 expression. In RIP, we found that miR-148b interacted with HOTAIR. Si-HOTAIRs increased miR-148b expression, and miR-148b mimic inversely reduced HOTAIR expression. Si-HOTAIRs and miR-148b mimic reduced DNMT1 expression and increased PCDH10 expression compared to the control. CONCLUSION: This study demonstrated that HOTAIR interacts with miR-148b and DNMT1, eventually leading to PCDH10 methylation, which contributes to the progression of GC. Our findings provide a better understanding for detailed pathway of HOTAIR in epigenetic mechanism of GC.


Assuntos
Adenocarcinoma/genética , Caderinas/genética , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , Metilação de DNA/genética , Genes Supressores de Tumor , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Apoptose/genética , Caderinas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Protocaderinas , Neoplasias Gástricas/patologia
3.
Yonsei Med J ; 61(11): 923-934, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33107235

RESUMO

PURPOSE: The mechanisms of Wnt/ß-catenin pathway signaling and abnormal expression of tumor suppressor genes is not well known in gastric cancer (GC). Long non-coding RNA (lncRNA) has recently been identified as a possible link therein. In this study, we investigated the role of lung cancer associated transcript 1 (LUCAT1) in GC. MATERIALS AND METHODS: The expression of LUCAT1 in GC cell lines and 100 tissue samples was examined by qRT-PCR. Two different siRNAs were used for knockdown of LUCAT1 expression. Cell viability was assessed by MTT assay. To analyze metastasis, scratch wound-healing assay, a Matrigel invasion assay, and colony formation assay were performed. Apoptosis was analyzed by PI/Annexin-V staining. To check the methylation status in tumor suppressor genes, methylation-specific PCR was carried out. Western blot was performed to detect epithelial-mesenchymal transition and apoptosis markers upon silencing of LUCAT1 (siLUCAT1). RESULTS: LUCAT1 expression in GC cell lines and tissues was significantly elevated, compared to that in normal gastric cells and adjacent non-tumor tissues (p<0.001). Two different siRNAs for LUCAT1 reduced cell proliferation, invasion, and migration, compared to siCT (p<0.05), and these reductions were restored by pcDNA-LUCAT1 (p<0.05). siLUCAT1 elicited upregulation of the expression of CXXC4 and SFRP2. The expression of H3K27me3 was reduced by siLUCAT1, and this reduction was correlated with methylation of CXXC4 and SFRP2. Inhibition of LUCAT1 up-regulated EZH2 expression and resulted in demethylation of CXXC4 and SFRP2 through the Wnt/ß-catenin signaling pathway. CONCLUSION: We concluded that LUCAT1 induces methylation of CXXC4 and SFRP2, thereby regulating Wnt/ß-catenin signaling in GC.


Assuntos
Proteínas de Ligação a DNA/genética , Genes Supressores de Tumor , Proteínas de Membrana/genética , Invasividade Neoplásica/genética , RNA Longo não Codificante/metabolismo , Neoplasias Gástricas/genética , Fatores de Transcrição/genética , Apoptose/genética , Biomarcadores Tumorais/genética , Proliferação de Células/genética , Sobrevivência Celular , Proteínas de Ligação a DNA/metabolismo , Regulação para Baixo , Transição Epitelial-Mesenquimal , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias Pulmonares/genética , Proteínas de Membrana/metabolismo , RNA Longo não Codificante/genética , RNA Interferente Pequeno/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/patologia , Fatores de Transcrição/metabolismo , Regulação para Cima , Via de Sinalização Wnt
4.
Sci Rep ; 10(1): 15154, 2020 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-32938975

RESUMO

Non-erosive reflux disease (NERD) pathogenesis has not been thoroughly evaluated. Here, we assessed the response of patients with NERD to proton pump inhibitor (PPI) therapy; changes in the microbiome and biologic marker expression in the esophageal mucosa were also evaluated. Patients with NERD (n = 55) received esomeprazole (20 mg) for eight weeks. The treatment response was evaluated at baseline, week four, and week eight. Esophageal mucosal markers and oropharyngeal and esophageal microbiomes were analyzed in patients who underwent upper gastrointestinal endoscopy at screening (n = 18). Complete and partial response rates at week eight were 60.0% and 32.7% for heartburn, and 61.8% and 29.1% for regurgitation, respectively. The expressions of several inflammatory cytokines, including IL-6, IL-8, and NF-κB, were decreased at week eight. Streptococcus, Haemophilus, Prevotella, Veillonella, Neisseria, and Granulicatella were prevalent regardless of the time-point (baseline vs. week eight) and organ (oropharynx vs. esophagus). The overall composition of oropharyngeal and esophageal microbiomes showed significant difference (P = 0.004), which disappeared after PPI therapy. In conclusion, half-dose PPI therapy for eight weeks could effectively control NERD symptoms. The expression of several inflammatory cytokines was reduced in the esophagus, and oropharyngeal and esophageal microbiomes in patients with NERD showed significant difference. However, the microbial compositions in the oropharynx and esophagus were not affected by PPI therapy in this study. Impact of PPI on the microbiome in patients with NERD should be more investigated in future studies.


Assuntos
Esôfago/microbiologia , Refluxo Gastroesofágico/tratamento farmacológico , Refluxo Gastroesofágico/microbiologia , Microbioma Gastrointestinal , Adulto , Idoso , Biomarcadores/metabolismo , Citocinas/metabolismo , Esomeprazol/uso terapêutico , Mucosa Esofágica/metabolismo , Mucosa Esofágica/microbiologia , Esôfago/metabolismo , Feminino , Refluxo Gastroesofágico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Mediadores da Inflamação/metabolismo , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Inibidores da Bomba de Prótons/uso terapêutico
5.
Gut Liver ; 13(4): 421-429, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30970439

RESUMO

Background/Aims: Gastric cancer is one of the most common malignant tumors worldwide with poor prognosis due to a lack of effective treatment modalities. Recent research showed that a long noncoding RNA named N-BLR modulates the epithelial-to-mesenchymal transition (EMT) process in colorectal cancer. However, the biological role of N-BLR in gastric cancer still remains to be explored. The aim of this study was to investigate the possibility of N-BLR as an EMT modulator in gastric cancer. Methods: The expression of N-BLR was measured by quantitative polymerase chain reaction in fresh gastric cancer tissue, paired adjacent normal tissues and cell lines. Fresh gastric tissues, paired samples obtained by surgery and clinical data were collected prospectively. Knockdown of N-BLR was induced by small interfering RNA (siRNAs). Cell number and viability were assessed after treatment with siRNAs. The ability of N-BLR to promote metastasis was measured using migration and invasion assays. Additionally, an inverse correlation between N-BLR and miR-200c was measured by TaqMan microRNA assays. Western blotting was performed to detect EMT and apoptosis markers upon knockdown of N-BLR. Results: N-BLR expression was significantly elevated in gastric cancer cell lines and tissues compared to that in a normal gastric cell line and adjacent normal tissues (p<0.01). Two different siRNAs significantly reduced cell proliferation of gastric cancer cells compared to the siCT. siRNAs for N-BLR significantly suppressed migration and invasion in AGS and MKN28 cells. N-BLR expression was inversely correlated with miR-200c, which is known to regulate EMT. Conclusions: In this study, we confirmed N-BLR as a regulator of the EMT process in gastric cancer.


Assuntos
Adenocarcinoma/genética , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , RNA Longo não Codificante/genética , Neoplasias Gástricas/genética , Adenocarcinoma/patologia , Idoso , Linhagem Celular Tumoral , Feminino , Técnicas de Silenciamento de Genes , Humanos , Masculino , Pessoa de Meia-Idade , Invasividade Neoplásica/genética , Metástase Neoplásica/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/patologia
6.
Oncol Rep ; 37(6): 3270-3278, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28440514

RESUMO

Worldwide, breast cancer (BCa) is the most common cancer in women. Among its subtypes, triple-negative breast cancer (TNBC) is an aggressive form associated with diminished survival. TNBCs are characterized by their absence, or minimal expression, of the estrogen and progesterone receptors, as well as the human epidermal growth factor receptor 2 (i.e. ER-/-, PR-/-, Her2-/Low). Consequently, treatment for this subtype of BCa remains problematic. Silibinin, a derivative of the flavonoid silymarin, is reported to have anticancer activities against hepatic and non-small cell lung cancers. We hypothesized that silibinin might inhibit cell-extracellular matrix interactions via the regulation, expression, and activation of STAT3 in TNBCs, which could directly inhibit metastasis in silibinin-treated BCa cells. Using proliferation assays, we found that exposure to silibinin at a concentration of 200 µM inhibited the proliferation of breast cancer (BCa) cells; this concentration also inhibited phosphorylation of STAT3 and its principal upstream kinase, Jak2. Furthermore, we found that silibinin inhibited the nuclear translocation of STAT3, as well as its binding to the MMP2 gene promoter. The ability of silibinin to inhibit metastasis was further studied using an in vitro invasion assay. The results confirm the role of STAT3 as a critical mediator in the invasive potential of BCa cells, and STAT3 knock-down resulted in inhibition of invasion. The invasion ability of silibinin-treated BCa cells was studied in detail with the expression of MMP2. Prevention of STAT3 activation also resulted in the inhibition of MMP2 expression. Use of a small interfering RNA to knock down STAT3 (siSTAT3) allowed us to confirm the role of STAT3 in regulating MMP2 expression, as well as the mechanism of action of silibinin in inhibiting MMP2. Taken together, we found that silibinin inhibits the Jak2/STAT3/MMP2 signaling pathway, and inhibits the proliferation, migration, and invasion of triple-negative BCa cells.


Assuntos
Janus Quinase 2/genética , Metaloproteinase 2 da Matriz/genética , Fator de Transcrição STAT3/genética , Silimarina/administração & dosagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Invasividade Neoplásica/genética , Fosforilação , Transdução de Sinais/efeitos dos fármacos , Silibina , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
7.
Anticancer Res ; 37(4): 1637-1646, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28373424

RESUMO

Gingival squamous cell carcinoma is a rare form of cancer that accounts for less than 10% of all head and neck cancers. Targeted therapies with natural compounds are of interest because they possess high efficacy with fewer side-effects. Methylsulfonylmethane (MSM) is an organic sulfur-containing compound with anticancer activities. The main goal of this study was to induce proliferation inhibition and apoptosis in the metastatic YD-38 cell line. MSM up-regulated expression of P21Waf1/Cip1 and P27Kip1 genes and down-regulated expression of cyclin D1 (CCND1) and CDK4. Moreover, treatment with MSM induced apoptosis and up-regulation of BAX in YD-38 cells. In accordance, the expression of the BCL-2 and BCL-XL, were inhibited, indicating the role of mitochondria in MSM-induced apoptosis. Analysis of mitochondrial integrity showed a loss of mitochondrial potential with an increased level of cytochrome c in the cytosol compared to mitochondria. Active CASPASE-3 (CASP3) was also observed, confirming that MSM-induced apoptosis is caspase-mediated.


Assuntos
Carcinoma de Células Escamosas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Fase G1/efeitos dos fármacos , Neoplasias Gengivais/patologia , Mitocôndrias/patologia , Sulfonas/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Carcinoma de Células Escamosas/tratamento farmacológico , Carcinoma de Células Escamosas/metabolismo , Proliferação de Células/efeitos dos fármacos , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Citocromos c/metabolismo , Neoplasias Gengivais/tratamento farmacológico , Neoplasias Gengivais/metabolismo , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
8.
J Cell Mol Med ; 21(4): 720-734, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-27862996

RESUMO

Tannic acid (TA), a naturally occurring polyphenol, is a potent anti-oxidant with anti-proliferative effects on multiple cancers. However, its ability to modulate gene-specific expression of tumour suppressor genes and oncogenes has not been assessed. This work investigates the mechanism of TA to regulate canonical and non-canonical STAT pathways to impose the gene-specific induction of G1-arrest and apoptosis. Regardless of the p53 status and membrane receptors, TA induced G1-arrest and apoptosis in breast cancer cells. Tannic acid distinctly modulated both canonical and non-canonical STAT pathways, each with a specific role in TA-induced anti-cancer effects. Tannic acid enhanced STAT1 ser727 phosphorylation via upstream serine kinase p38. This STAT1 ser727 phosphorylation enhanced the DNA-binding activity of STAT1 and in turn enhanced expression of p21Waf1/Cip1 . However, TA binds to EGF-R and inhibits the tyrosine phosphorylation of both STAT1 and STAT3. This inhibition leads to the inhibition of STAT3/BCL-2 DNA-binding activity. As a result, the expression and mitochondrial localization of BCl-2 are declined. This altered expression and localization of mitochondrial anti-pore factors resulted in the release of cytochrome c and the activation of intrinsic apoptosis cascade involving caspases. Taken together, our results suggest that TA modulates EGF-R/Jak2/STAT1/3 and P38/STAT1/p21Waf1/Cip1 pathways and induce G1-arrest and intrinsic apoptosis in breast carcinomas.


Assuntos
Neoplasias da Mama/metabolismo , Receptores ErbB/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Taninos/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Sinergismo Farmacológico , Feminino , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Gefitinibe , Humanos , Fosforilação/efeitos dos fármacos , Regiões Promotoras Genéticas/genética , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Quinazolinas/farmacologia , Tamoxifeno/farmacologia
9.
Anim Biotechnol ; 28(3): 189-197, 2017 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-27874312

RESUMO

Ketogenesis is the production of ketone bodies, which provide energy when the body lacks glucose. Under ketogenic conditions, the body switches from primarily carbohydrate to fat metabolism to maintain energy balance. However, accumulation of high levels of ketone bodies in the blood results in ketosis. Treating ketosis with natural substances is preferable, because they are unlikely to cause side-effects. Momilactone B is an active compound isolated from Korean rice. Based on previous studies, we hypothesized that momilactone B could inhibit ketosis. We constructed an in vitro ketosis model by glucose starvation. We used this model to test the anti-ketosis effects of momilactone B. A primary target for treating ketosis is angiopoietin-like-3 (ANGPTL3), which modulates lipoprotein metabolism by inhibiting lipoprotein lipase (LPL), a multifunctional enzyme that breaks down stored fat to produce triglycerides. We showed that momilactone B could regulate the ANGPTL3-LPL pathway. However, a strong anti-ketosis candidate drug should also inhibit ketogenesis. Ketogenesis can be suppressed by inhibiting the expression of 3-hydroxy-3-methylglutaryl-CoA synthase-2 (HMGCS2), a mitochondrial enzyme that converts acetyl-CoA to ketone bodies. We found that momilactone B suppressed the expression of HMGCS2 through the increased expression of STAT5b. We also elucidated the relationship of STAT5b to ANGPTL3 and LPL expression.


Assuntos
Angiopoietinas/metabolismo , Diterpenos/farmacologia , Hidroximetilglutaril-CoA Sintase/antagonistas & inibidores , Cetose/metabolismo , Lactonas/farmacologia , Lipase Lipoproteica/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Hidroximetilglutaril-CoA Sintase/metabolismo , Corpos Cetônicos/metabolismo , Camundongos , Modelos Biológicos , Fator de Transcrição STAT5/metabolismo
10.
PLoS One ; 11(7): e0159891, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27447722

RESUMO

Osteoclast differentiation is dependent on the activities of receptor activator NF-kB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF). Given that RANKL plays a critical role in osteoclast formation and bone resorption, any new compounds found to alter its activity would be predicted to have therapeutic potential for disorders associated with bone loss. Methylsulfonylmethane (MSM) is a naturally occurring sulfur compound with well-documented anti-oxidant and anti-inflammatory properties; currently its effects on osteoclast differentiation are unknown. We sought to investigate whether MSM could regulate osteoclastogenesis, and if so, its mechanism of action. In this study, we investigated the effects of MSM on RANKL-induced osteoclast differentiation, together with STAT3's involvement in the expression of osteoclastic gene markers. These experiments were conducted using bone marrow derived macrophages (BMMs) and cell line material, together with analyses that interrogated both protein and mRNA levels, as well as signaling pathway activity. Although MSM was not toxic to osteoclast precursors, MSM markedly inhibited RANKL-induced TRAP activity, multinucleated osteoclast formation, and bone resorptive activity. Additionally, the expression of several osteoclastogenesis-related marker genes, including TRAF6, c-Fos, NFATc1, cathepsin K, and OSCAR were suppressed by MSM. MSM mediated suppression of RANKL-induced osteoclastogenesis involved inhibition of ITAM signaling effectors such as PLCγ and Syk, with a blockade of NF-kB rather than MAPK activity. Furthermore, MSM inhibited RANKL-induced phosphorylation of STAT3 Ser727. Knockdown of STAT3 using shRNAs resulted in reduced RANKL-mediated phosphorylation of Ser727 STAT3, and TRAF6 in cells for which depletion of STAT3 was confirmed. Additionally, the expression of RANKL-induced osteoclastogenic marker genes were significantly decreased by MSM and STAT3 knockdown. Taken together, these results indicate that STAT3 plays a pivotal role in RANKL-induced osteoclast formation, and that MSM can attenuate RANKL-induced osteoclastogenesis by blocking both NF-kB and STAT3 activity.


Assuntos
Reabsorção Óssea/metabolismo , Dimetil Sulfóxido/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , NF-kappa B/metabolismo , Ligante RANK/metabolismo , Fator de Transcrição STAT3/metabolismo , Sulfonas/farmacologia , Animais , Biomarcadores , Reabsorção Óssea/genética , Diferenciação Celular/efeitos dos fármacos , Expressão Gênica , Camundongos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Ligante RANK/farmacologia , Fator de Transcrição STAT3/genética , Transdução de Sinais , Fosfatase Ácida Resistente a Tartarato/metabolismo
11.
Mol Med Rep ; 14(1): 460-6, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27175741

RESUMO

As human lifespans have increased, the incidence of osteoporosis has also increased. Methylsulfonylmethane (MSM) affects the process of mesenchymal stem cell (MSC) differentiation into osteoblasts via the Janus kinase 2 (Jak2)/signal transducer and activator of transcription (STAT)5b signaling pathway, and bone morphogenetic protein 2 (BMP­2) is also known to significantly affect bone health. In addition, the phosphorylation of small mothers against decapentaplegic (Smad)1/5/8 regulates the Runt­related transcription factor 2 (Runx2) gene, which encodes a transcription factor for osteoblast differentiation markers. In the present study, the differentiation of MSCs treated with MSM, BMP­2, and their combination were examined. The differentiation of osteoblasts was demonstrated through observation of morphological changes and mineralization, using alizarin red and Von Kossa staining. Western blotting analysis demonstrated that the combination of MSM and BMP-2 increased the phosphorylation of the BMP signaling-associated protein, Smad1/5/8. Combination of MSM and BMP-2 significantly increased osteogenic differentiation and mineralization of the MSCs compared with either MSM or BMP-2 alone. Additionally, reverse transcription-polymerase chain reaction analysis demonstrated that combination of MSM and BMP-2 increased the expression level of the Runx2 gene and the osteoblast differentiation marker genes, alkaline phosphatase, bone sialoprotein and osteocalcin, in MSCs compared with controls. Thus, the combination of MSM and BMP-2 may promote the differentiation of MSCs into osteoblasts.


Assuntos
Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteoblastos/citologia , Osteogênese/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Biomarcadores , Proteína Morfogenética Óssea 2/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Regulação da Expressão Gênica , Imuno-Histoquímica , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
12.
Int J Oncol ; 48(2): 836-42, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26648017

RESUMO

Breast cancer is the most common cancer in women globally. The factors that increase risk include: late age at first birth, alcohol, radiation exposure, family history of breast cancer, and postmenopausal hormone therapy. Numerous drugs are being developed to treat breast cancer. Among them, Herceptin is used for the treatment of human epidermal growth factor receptor 2 (HER2)-positive cases and targets HER2 effectively and efficiently, but it is very expensive. Methylsulfonylmethane (MSM) is an organic sulfur-containing natural compound having no reported toxicity. We examined MSM in breast cancer cell lines and found it inhibited the proliferation of estrogen receptor-positive and HER2-positive breast cancer cells in a dose-dependent manner. It also suppressed the activation of STAT5b and expression of HER2 in breast cancer cells. We determined the STAT5b binding site (GAS element) in the HER2 gene. Detailed analysis showed that MSM decreased the ability of STAT5b to bind the promoter of the HER2 gene and a luciferase assay demonstrated reduced activity. We confirmed that MSM can effectively regulate STAT5b, and thereby decrease HER2 expression. Therefore, we recommend the use of MSM as an inhibitor for the management of HER2-positive breast cancers.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Dimetil Sulfóxido/farmacologia , Receptor ErbB-2/metabolismo , Fator de Transcrição STAT5/metabolismo , Sulfonas/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Células MCF-7 , Regiões Promotoras Genéticas/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
13.
Int J Oncol ; 47(3): 1111-20, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26202061

RESUMO

Tannic acid (TA), is a potent anti-oxidant, showing anti-proliferative effects on numerous cancers. The ability of TA to induce proliferation inhibition on the rare tumor, gingival squamous cell carcinoma (GSCC), comprising <10% of all head and neck squamous cell carcinomas was studied in the YD-38 cell line. The main goal was to modulate the Jak2/STAT3 pathway using TA and to induce cell cycle arrest and apoptosis in GSCC. TA treatment induced G1 arrest and apoptosis in YD-38 cells. Molecular analysis revealed that TA inhibits Jak2/STAT3 pathway by preventing their expression as well as phosphorylation. This inhibition of STAT3 phosphorylation prevented the nuclear translocation and DNA binding capability of STAT3. Together with the inhibition of transcriptional regulatory function of STAT3, TA inhibited the expression of G1 phase modulators CDK-4, CDK-6, cyclin D1 and cyclin E. It is also evidenced that TA exerted an intense activation of p21Waf1/Cip1, p27Kip1 and p53 genes confirming its role in G1 phase inhibition. Additionally, upon treatment with TA, the expression of mitochondrial pore factors Bax, Bcl-2 and Bcl-XL were changed. We observed inhibition of Bcl-2 and an increase in mitochondrial localization of Bax leading to the loss of mitochondrial membrane potential, resulting in the release of cytochrome c to the cytosol. In addition, we perceived the activation of caspases upon TA treatment. Specific inhibition of caspase protected the cells from TA induced apoptosis. Taken together, this study reveals that TA significantly inhibits the Jak2/STAT3 signaling pathway and induces G1 arrest and mitochondrial apoptosis in YD-38 cells.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Escamosas/metabolismo , Neoplasias Gengivais/metabolismo , Mitocôndrias/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Taninos/farmacologia , Apoptose , Carcinoma de Células Escamosas/tratamento farmacológico , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Neoplasias Gengivais/tratamento farmacológico , Humanos , Janus Quinase 2/metabolismo , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...