Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Korean J Pediatr ; 55(9): 337-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23049591

RESUMO

PURPOSE: Leptin has been considered a link between metabolic state and reproductive activity. Defective reproductive function can occur in leptin-deficient and leptin-excessive conditions. The aim of this study was to examine the effects of centrally injected leptin on the hypothalamic KiSS-1 system in relation to gonadotropin-releasing hormone (GnRH) action in the initial stage of puberty. METHODS: Leptin (1 µg) was injected directly into the ventricle of pubertal female mice. The resultant gene expressions of hypothalamic GnRH and KiSS-1 and pituitary LH, 2 and 4 hours after injection, were compared with those of saline-injected control mice. The changes in the gene expressions after blocking the GnRH action were also analyzed. RESULTS: The basal expression levels of KiSS-1, GnRH, and LH were significantly higher in the pubertal mice than in the prepubertal mice. The 1-µg leptin dose significantly decreased the mRNA expression levels of KiSS-1, GnRH, and LH in the pubertal mice. A GnRH antagonist significantly increased the KiSS-1 and GnRH mRNA expression levels, and the additional leptin injection decreased the gene expression levels compared with those in the control group. CONCLUSION: The excess leptin might have suppressed the central reproductive axis in the pubertal mice by inhibiting the KiSS-1 expression, and this mechanism is independent of the GnRH-LH-estradiol feedback loop.

2.
Korean J Physiol Pharmacol ; 14(5): 279-83, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21165325

RESUMO

Urushinol, a plant allergen, has significantly restricted the medical application of Rhus verniciflua, although it has been reported to possess a wide variety of biological activities such as anti-inflammatory, antioxidant, and anti-cancer actions. To reduce the urushinol content while maintaining the beneficial biological activities, mushroom-mediated fermentation of Rhus verniciflua was carried out and this method resulted in significantly attenuated allergenicity [1]. In the present study, to examine the neuroprotective properties of mushroom-fermented stem bark of Rhus verniciflua, two constituents were isolated from mushroom-fermented bark and their neuroprotective properties were examined in a mouse model of kainic acid (KA)-induced excitotoxicity. KA resulted in significant apoptotic neuronal cell death in the CA3 region of mouse hippocampus. However, seven daily administrations of RVH-1 or RVH-2 prior to KA injection significantly attenuated KA-induced pyramidal neuronal cell death in the CA3 region. Furthermore, pretreatment with RVH-1 and RVH-2 also suppressed KA-induced microglial activation in the mouse hippocampus. The present study demonstrates that RVH-1 and RVH-2 isolated from Rhus verniciflua and detoxified using mushroom species possess neuroprotective properties against KA-induced excitotoxicity. This leads to the possibility that detoxified Rhus verniciflua can be a valuable asset in herbal medicine.

3.
Peptides ; 31(11): 2094-9, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20713105

RESUMO

Stanniocalcin 2 (STC2), the paralog of STC1, has been shown to act as a novel target of the mammalian unfolded protein response. We investigated the potential neuroprotective actions of STC2 against kainic acid toxicity in the hippocampus of ICR mice. STC2-treated mice experienced less neuronal cell loss in the CA3 area of the hippocampus. Also, microglial activation and heme oxygenase 1 expression were attenuated in the hippocampus of STC2-treated mice. To confirm whether STC2 regulates microglial activation directly, nitric oxide levels were measured in BV2 cells cultured with and without 10nM STC2. STC2 decreased the level of nitric oxide induced by lipopolysaccharide (LPS) treatment significantly. Also, STC2 pretreatment significantly decreased TNF-α and IL-1ß expression induced by LPS treatment. These observations demonstrated that STC2 exerts neuroprotective actions against excitotoxic insults through the inhibition of microglial activation.


Assuntos
Glicoproteínas/farmacologia , Ácido Caínico/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Animais , Morte Celular/efeitos dos fármacos , Heme Oxigenase-1/biossíntese , Hipocampo/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular , Interleucina-1beta/biossíntese , Peptídeos e Proteínas de Sinalização Intracelular , Lipopolissacarídeos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Microglia/efeitos dos fármacos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/biossíntese , Fator de Necrose Tumoral alfa/biossíntese
4.
Korean J Physiol Pharmacol ; 14(1): 37-43, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20221278

RESUMO

The serine/threonine kinase Akt has been shown to play a role of multiple cellular signaling pathways and act as a transducer of many functions initiated by growth factor receptors that activate phosphatidylinositol 3-kinase (PI3K). It has been reported that phosphorylated Akt activates eNOS resulting in the production of NO and that NO stimulates soluble guanylate cyclase (sGC), which results in accumulation of cGMP and subsequent activation of the protein kinase G (PKG). It has been also reported that PKG activates PI3K/Akt signaling. Therefore, it is possible that PI3K, Akt, eNOS, sGC, and PKG form a loop to exert enhanced and sustained activation of Akt. However, the existence of this loop in eNOS-expressing cells, such as endothelial cells or astrocytes, has not been reported. Thus, we examined a possibility that Akt phosphorylation might be enhanced via eNOS/sGC/PKG/PI3K pathway in astrocytes in vivo and in vitro. Phosphorylation of Akt was detected in astrocytes after KA treatment and was maintained up to 72 h in mouse hippocampus. 2 weeks after KA treatment, astrocytic Akt phosphorylation was normalized to control. The inhibition of eNOS, sGC, and PKG significantly decreased Akt and eNOS phosphorylation induced by KA in astrocytes. In contrast, the decreased phosphorylation of Akt and eNOS by eNOS inhibition was significantly reversed with PKG activation. The above findings in mouse hippocampus were also observed in primary astrocytes. These data suggest that Akt/eNOS/sGC/PKG/PI3K pathway may constitute a loop, resulting in enhanced and sustained Akt activation in astrocytes.

5.
Korean J Physiol Pharmacol ; 13(4): 265-71, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19885009

RESUMO

Nitric oxide (NO) has both neuroprotective and neurotoxic effects depending on its concentration and the experimental model. We tested the effects of NG-nitro-L-arginine methyl ester (L-NAME), a nonselective nitric oxide synthase (NOS) inhibitor, and aminoguanidine, a selective inducible NOS (iNOS) inhibitor, on kainic acid (KA)-induced seizures and hippocampal CA3 neuronal death. L-NAME (50 mg/kg, i.p.) and/or aminoguanidine (200 mg/kg, i.p.) were administered 1 h prior to the intracerebroventricular (i.c.v.) injection of KA. Pretreatment with L-NAME significantly increased KA-induced CA3 neuronal death, iNOS expression, and activation of microglia. However, pretreatment with aminoguanidine significantly suppressed both the KA-induced and L-NAME-aggravated hippocampal CA3 neuronal death with concomitant decreases in iNOS expression and microglial activation. The protective effect of aminoguanidine was maintained for up to 2 weeks. Furthermore, iNOS knockout mice (iNOS(-/-)) were resistant to KA-induced neuronal death. The present study demonstrates that aminoguanidine attenuates KA-induced neuronal death, whereas L-NAME aggravates neuronal death, in the CA3 region of the hippocampus, suggesting that NOS isoforms play different roles in KA-induced excitotoxicity.

6.
Korean J Physiol Pharmacol ; 12(2): 37-41, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20157392

RESUMO

Melatonin has been reported to protect neurons from a variety of neurotoxicity. However, the underlying mechanism by which melatonin exerts its neuroprotective property has not yet been clearly understood. We previously demonstrated that melatonin protected kainic acid-induced neuronal cell death in mouse hippocampus, accompanied by sustained activation of Akt, a critical mediator of neuronal survival. To further elucidate the neuroprotective action of melatonin, we examined in the present study the causal mechanism how Akt signaling pathway is regulated by melatonin in a rat primary astrocyte culture model. Melatonin resulted in increased astrocytic Akt phosphorylation, which was significantly decreased with wortmannin, a specific inhibitor of PI3K, suggesting that activation of Akt by melatonin is mediated through the PI3K-Akt signaling pathway. Furthermore, increased Akt activation was also significantly decreased with luzindole, a non-selective melatonin receptor antagonist. As downstream signaling pathway of Akt activation, increased levels of CREB phoshorylation and GDNF expression were observed, which were also attenuated with wortmannin and luzindole. These results strongly suggest that melatonin exerts its neuroprotective property in astrocytes through the activation of plasma membrane receptors and then PI3K-Akt signaling pathway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...