Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 18014, 2024 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-39097612

RESUMO

Cerium oxide nanoparticles are known for their antibacterial effects resulting from Ce3+ to Ce4+ conversion. Application of such cerium oxide nanoparticles in dentistry has been previously considered but limited due to deterioration of mechanical properties. Hence, this study aimed to examine mesoporous silica (MCM-41) coated with cerium oxide nanoparticles and evaluate the antibacterial effects and mechanical properties when applied to dental composite resin. Cerium oxide nanoparticles were coated on the MCM-41 surface using the sol-gel method by adding cerium oxide nanoparticle precursor to the MCM-41 dispersion. The samples were tested for antibacterial activity against Streptococcus mutans via CFU and MTT assays. The mechanical properties were assessed by flexural strength and depth of cure according to ISO 4049. Data were analyzed using a t-test, one-way ANOVA, and Tukey's post-hoc test (p = 0.05). The experimental group showed significantly increased antibacterial properties compared to the control groups (p < 0.005). The flexural strength exhibited a decreasing trend as the amount of cerium oxide nanoparticle-coated MCM-41 increased. However, the flexural strength and depth of cure values of the silane group met the ISO 4049 standard. Antibacterial properties increased with increasing amounts of cerium oxide nanoparticles. Although the mechanical properties decreased, silane treatment overcame this drawback. Hence, the cerium oxide nanoparticles coated on MCM-41 may be used for dental resin composite.


Assuntos
Antibacterianos , Cério , Resinas Compostas , Nanopartículas , Dióxido de Silício , Streptococcus mutans , Cério/química , Cério/farmacologia , Dióxido de Silício/química , Antibacterianos/farmacologia , Antibacterianos/química , Resinas Compostas/química , Resinas Compostas/farmacologia , Streptococcus mutans/efeitos dos fármacos , Nanopartículas/química , Resinas Acrílicas/química , Teste de Materiais , Poliuretanos/química , Poliuretanos/farmacologia , Resistência à Flexão , Porosidade
2.
Sci Rep ; 13(1): 17763, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853055

RESUMO

Dental composite resins are widely used in dental restorations. However, their clinical application is limited by the occurrence of secondary caries. Strontium-modified phosphate-based glass (Sr-PBG) is a material known to have a sustainable bacterial resistance effect. The mechanical properties (in particular, flexural strength, modulus of elasticity, and hardness) of dental materials determine their function. Therefore, this study aimed to investigate the mechanical and ion-releasing properties as well as the sustainable bacterial resistance effect of bioactive resin composites containing Sr-PBG. The data were analyzed by ANOVA and Tuckey's tests (p < 0.05). We incorporated a Sr-PBG microfiller at 3, 6, and 9 wt.% concentrations into a commercially available composite resin and investigated the mechanical properties (flexural strength, elastic modulus, and micro hardness), ion release characteristics, and color of the resultant resins. In addition, we examined the antibacterial effects of the composite resins against Streptococcus mutans (S. mutans). The mechanical properties of the Sr-PBG groups differed only slightly from those of the control group (p > 0.05). However, the optical density at 600 nm of S. mutans incubated on the experimental group was significantly lower compared to that observed with the control (p < 0.05) both before and after thermocycling between 5 and 55 â„ƒ for 850 cycles (dwell time: 45 s). Therefore, strontium-modified resin materials exhibited a sustainable bacterial resistance effect in vitro while maintaining some of the mechanical properties of ordinary acrylic resins.


Assuntos
Resinas Compostas , Metacrilatos , Teste de Materiais , Vidro , Elasticidade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA