Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746286

RESUMO

Automatic violence detection in video surveillance is essential for social and personal security. Monitoring the large number of surveillance cameras used in public and private areas is challenging for human operators. The manual nature of this task significantly increases the possibility of ignoring important events due to human limitations when paying attention to multiple targets at a time. Researchers have proposed several methods to detect violent events automatically to overcome this problem. So far, most previous studies have focused only on classifying short clips without performing spatial localization. In this work, we tackle this problem by proposing a weakly supervised method to detect spatially and temporarily violent actions in surveillance videos using only video-level labels. The proposed method follows a Fast-RCNN style architecture, that has been temporally extended. First, we generate spatiotemporal proposals (action tubes) leveraging pre-trained person detectors, motion appearance (dynamic images), and tracking algorithms. Then, given an input video and the action proposals, we extract spatiotemporal features using deep neural networks. Finally, a classifier based on multiple-instance learning is trained to label each action tube as violent or non-violent. We obtain similar results to the state of the art in three public databases Hockey Fight, RLVSD, and RWF-2000, achieving an accuracy of 97.3%, 92.88%, 88.7%, respectively.


Assuntos
Redes Neurais de Computação , Reconhecimento Automatizado de Padrão , Algoritmos , Humanos , Movimento (Física) , Reconhecimento Automatizado de Padrão/métodos , Violência
2.
Sensors (Basel) ; 22(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35270896

RESUMO

Recognition using ear images has been an active field of research in recent years. Besides faces and fingerprints, ears have a unique structure to identify people and can be captured from a distance, contactless, and without the subject's cooperation. Therefore, it represents an appealing choice for building surveillance, forensic, and security applications. However, many techniques used in those applications-e.g., convolutional neural networks (CNN)-usually demand large-scale datasets for training. This research work introduces a new dataset of ear images taken under uncontrolled conditions that present high inter-class and intra-class variability. We built this dataset using an existing face dataset called the VGGFace, which gathers more than 3.3 million images. in addition, we perform ear recognition using transfer learning with CNN pretrained on image and face recognition. Finally, we performed two experiments on two unconstrained datasets and reported our results using Rank-based metrics.


Assuntos
Reconhecimento Facial , Redes Neurais de Computação , Orelha , Humanos , Reconhecimento Psicológico
3.
Comput Methods Programs Biomed ; 127: 144-64, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26775139

RESUMO

An electrocardiogram (ECG) measures the electric activity of the heart and has been widely used for detecting heart diseases due to its simplicity and non-invasive nature. By analyzing the electrical signal of each heartbeat, i.e., the combination of action impulse waveforms produced by different specialized cardiac tissues found in the heart, it is possible to detect some of its abnormalities. In the last decades, several works were developed to produce automatic ECG-based heartbeat classification methods. In this work, we survey the current state-of-the-art methods of ECG-based automated abnormalities heartbeat classification by presenting the ECG signal preprocessing, the heartbeat segmentation techniques, the feature description methods and the learning algorithms used. In addition, we describe some of the databases used for evaluation of methods indicated by a well-known standard developed by the Association for the Advancement of Medical Instrumentation (AAMI) and described in ANSI/AAMI EC57:1998/(R)2008 (ANSI/AAMI, 2008). Finally, we discuss limitations and drawbacks of the methods in the literature presenting concluding remarks and future challenges, and also we propose an evaluation process workflow to guide authors in future works.


Assuntos
Arritmias Cardíacas/diagnóstico , Frequência Cardíaca , Algoritmos , Arritmias Cardíacas/fisiopatologia , Automação , Eletrocardiografia , Humanos , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...