Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(67): 10133-10136, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37501644

RESUMO

The electrochemical nitrogen reduction reaction (NRR) to produce NH3 is the most efficient, eco-friendly and cost-effective alternative to the Haber-Bosch process. It is crucial to investigate and develop electrocatalysts selective for NH3 synthesis. In recent studies, the Ti3C2 MXene has emerged as a highly promising electrocatalyst for the NRR process. In this work, we explore the effect of Zif-8 addition over MXene sheets in order to control the rate of hydrogen evolution reaction (HER). Despite the better result obtained for Zif-8@Ti3C2 (3.0 µg NH3 gcat-1 h-1 at -0.55 V/RHE), the ammonia produced when using Zif-8@Ti3C2 as cathode material is shown to be originated from nitrogen atoms contained in the Zif-8 structure instead of those of N2. The results shed light to the need to fully understand the N2 electroreduction process over N-containing electrocatalysts.

2.
Nanoscale Adv ; 5(3): 701-710, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36756503

RESUMO

We synthesized nickel (Ni) nanoparticles (NPs) in a high specific surface area (SSA) p-block element-containing inorganic compound prepared via the polymer-derived ceramics (PDC) route to dispatch the obtained nanocomposite towards oxygen evolution reaction (OER). The in situ formation of Ni NPs in an amorphous silicon carboxynitride (Si-C-O-N(H)) matrix is allowed by the reactive blending of a polysilazane, NiCl2 and DMF followed by the subsequent thermolysis of the Ni : organosilicon polymer coordination complex at a temperature as low as 500 °C in flowing argon. The final nanocomposite displays a BET SSA as high as 311 m2 g-1 while the structure of the NPs corresponds to face-centred cubic (fcc) Ni along with interstitial-atom free (IAF) hexagonal close-packed (hcp) Ni as revealed by XRD. A closer look into the compound through FEG-SEM microscopy confirms the formation of pure metallic Ni, while HR-TEM imaging reveals the occurrence of Ni particles featuring a fcc phase and surrounded by carbon layers; thus, forming core-shell structures, along with Ni NPs in an IAF hcp phase. By considering that this newly synthesized material contains only Ni without doping (e.g., Fe) with a low mass loading (0.15 mg cm-2), it shows promising OER performances with an overpotential as low as 360 mV at 10 mA cm-2 according to the high SSA matrix, the presence of the IAF hcp Ni NPs and the development of core-shell structures. Given the simplicity, the flexibility, and the low cost of the proposed synthesis approach, this work opens the doors towards a new family of very active and stable high SSA nanocomposites made by the PDC route containing well dispersed and accessible non-noble transition metals for electrocatalysis applications.

3.
J Am Chem Soc ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36779668

RESUMO

The surface functionalization of 2D transition metal carbides or nitrides, so-called MXenes, is one of the fundamental levers allowing to deeply modify their physicochemical properties. Beyond new approaches to control this pivotal parameter, the ability to unambiguously assess their surface chemistry is thus key to expand the application fields of this large class of 2D materials. Using a combination of experiments and state of the art density functional theory calculations, we show that the NMR signal of the carbon─the element common to all MXene carbides and corresponding MAX phase precursors─is extremely sensitive to the MXene functionalization, although carbon atoms are not directly bonded to the surface groups. The simulations include the orbital part to the NMR shielding and the contribution from the Knight shift, which is crucial to achieve good correlation with the experimental data, as demonstrated on a set of reference MXene precursors. Starting with the Ti3C2Tx MXene benchmark system, we confirm the high sensitivity of the 13C NMR shift to the exfoliation process. Developing a theoretical protocol to straightforwardly simulate different surface chemistries, we show that the 13C NMR shift variations can be quantitatively related to different surface compositions and number of surface chemistry variants induced by the different etching agents. In addition, we propose that the etching agent affects not only the nature of the surface groups but also their spatial distribution. The direct correlation between surface chemistry and 13C NMR shift is further confirmed on the V2CTx, Mo2CTx, and Nb2CTx MXenes.

4.
ACS Nano ; 15(3): 4245-4255, 2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33586963

RESUMO

MXenes are a young family of two-dimensional transition metal carbides, nitrides, and carbonitrides with highly controllable structure, composition, and surface chemistry to adjust for target applications. Here, we demonstrate the modifications of two-dimensional MXenes by low-energy ion implantation, leading to the incorporation of Mn ions in Ti3C2Tx (where Tx is a surface termination) thin films. Damage and structural defects caused by the implantation process are characterized at different depths by XPS on Ti 2p core-level spectra, by ToF-SIMS, and with electron energy loss spectroscopy analyses. Results show that the ion-induced alteration of the damage tolerant Ti3C2Tx layer is due to defect formation at both Ti and C sites, thereby promoting the functionalization of these sites with oxygen groups. This work contributes to the inspiring approach of tailoring 2D MXene structure and properties through doping and defect formation by low-energy ion implantation to expand their practical applications.

5.
Phys Chem Chem Phys ; 18(45): 30946-30953, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27805183

RESUMO

The role of the surface groups T (T = OH, O or F) in the chemical bonding in two-dimensional Ti3C2Tx MXene is directly evidenced combining electron energy-loss spectroscopy in a transmission electron microscope and simulations based on density functional theory. By focusing on the 1s core electrons excitations of the C and (F, O) atoms, the site projected electronic structure is resolved. The Electron Energy-Loss Near Edge Structures (ELNES) at the C-K edge are shown to be sensitive to the chemical nature and the location of the T-groups on the MXene's surface and thereby allow for the characterization of the MXene's functionalization on the nanometre scale. In addition, the ELNES at the C and F-K edges are shown to be determined by the hybridizations of these atoms with the Ti d bands: these edges are thus relevant probes of the Ti d density of states close to the Fermi level which is of particular interest since it drives most of the Ti3C2Tx electronic properties. Finally, the crucial role in the MXene's functionalization of the etchant used for its synthesis is evidenced by locally determining the [O]/[F] concentration ratio using the corresponding K edges. This ratio is shown to be drastically increased from 1.4 to 3.5 when using HF or LiF/HCl respectively.

6.
Inorg Chem ; 46(23): 9961-7, 2007 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-17929805

RESUMO

The inherently oxygen-deficient compounds Ln26O27 square(BO3)8 (Ln=La, Nd) react with water vapor leading to Ln26O26(OH)2(BO3)8 phases, and this reaction is reversible. The crystal structure of Nd26O27 square(BO3)8 has been determined from single-crystal data (space group P with a=6.7643(10) A, b=12.663(2) A, c=14.271(2) A, alpha=90.553(8) degrees, beta=99.778(10) degrees, and gamma=90.511(9) degrees). It is a triclinic distorted version of the monoclinic structure of La26O27 square(BO3)8. The Ln26O26(OH)2(BO3)8 phases both crystallize in the monoclinic system (space group P21/c with a=6.7445(4) A, b=12.6177(9) A, c=14.4947(10) A, and beta=100.168(7) degrees for Nd26O26(OH)2(BO3)8 and a=6.9130(15) A, b=12.896(3) A, c=14.792(4) A, beta=99.698(16) degrees for La26O26(OH)2(BO3)8), and their crystal structure has been determined from single-crystal data, showing that the hydroxyl groups are localized mainly on one of the oxygen sites at room temperature (RT). For the Nd phases, the change in crystal system can result from two different phenomena depending on the atmosphere, either a phase transformation corresponding to a water uptake under wet conditions (triclinic Nd26O27 square(BO3)8 at RT-->monoclinic Nd26O26(OH)2(BO3)8) or a phase transition at approximately 300 degrees C for the anhydrous phase under dry conditions (triclinic Nd26O27 square(BO3)8 at RT-->monoclinic Nd26O27 square(BO3)8 at T>300 degrees C). For Nd26O26(OH)2(BO3)8, the conductivity measured under wet conditions at 300 degrees C is sigma300 degrees C approximately 0.5x10(-5) S cm(-1). Due to the dehydration process, the proton contribution to the total conductivity of the Nd phase is no longer observed above 500 degrees C whereas it was still clearly visible at 600 degrees C for the La phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...