Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253894

RESUMO

BackgroundNosocomial infections have posed a significant problem during the COVID-19 pandemic, affecting bed capacity and patient flow in hospitals. Effective infection control measures and identifying areas of highest risk is required to reduce the risk of spread to patients who are admitted with other illnesses. This is the first pandemic where whole genome sequencing (WGS) has been readily available. We demonstrate how WGS can be deployed to help identify and control outbreaks. Aims & MethodsSwabs performed on patients to detect SARS-CoV-2 underwent RT-PCR on one of multiple different platforms available at Nottingham University Hospitals NHS Trust. Positive samples underwent WGS on the GridION platform using the ARTIC amplicon sequencing protocol at the University of Nottingham. ResultsPhylogenetic analysis from WGS and epidemiological data was used to identify an initial transmission that occurred in the admissions ward. It also showed high prevalence of asymptomatic staff infection with genetically identical viral sequences which may have contributed to the propagation of the outbreak. Actions were taken to help reduce the risk of nosocomial transmission by the introduction of rapid point of care testing in the admissions ward and introduction of portable HEPA14 filters. WGS was also used in two instances to exclude an outbreak by discerning that the phylotypes were not identical, saving time and resources. ConclusionsIn conjunction with accurate epidemiological data, timely WGS can identify high risk areas of nosocomial transmission, which would benefit from implementation of appropriate control measures. Conversely, WGS can disprove nosocomial transmission, validating existing control measures and maintaining clinical service, even where epidemiological data is suggestive of an outbreak.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20176834

RESUMO

COVID-19 continues to cause a pandemic, having infected more than 20 million people globally. Successful elimination of the SARS-CoV-2 virus will require an effective vaccine. However, the immune correlates of infection are currently poorly understood. While neutralizing antibodies are believed to be essential for protection against infection, the contribution of the neutralizing antibody response to resolution of SARS-CoV-2 infection has not yet been defined. In this study the antibody responses to the SARS-CoV-2 spike protein and nucleocapsid proteins were investigated in a UK patient cohort, using optimised immunoassays and a retrovirus-based pseudotype entry assay. It was discovered that in severe COVID-19 infections an early antibody response to both antigens was associated with improved prognosis of infection. While not all SARS-CoV-2-reactive sera were found to possess neutralizing antibodies, neutralizing potency of sera was found to be greater in patients who went on to resolve infection, compared with those that died from COVID-19. Furthermore, viral genetic variation in spike protein was found to influence the production of neutralizing antibodies. Infection with the recently described spike protein variant 614G produced higher levels of neutralizing antibodies when compared to viruses possessing the 614D variant. These findings support the assertion that vaccines targeting generation of neutralizing antibodies may be useful at limiting SARS-CoV-2 infection. Assessment of the antibody responses to SARS-CoV-2 at time of diagnosis will be a useful addition to the diagnostic toolkit, enabling stratification of clinical intervention for severe COVID-19 disease.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20174623

RESUMO

In the early phases of the SARS coronavirus type 2 (SARS-CoV-2) pandemic, testing focused on individuals fitting a strict case definition involving a limited set of symptoms together with an identified epidemiological risk, such as contact with an infected individual or travel to a high-risk area. To assess whether this impaired our ability to detect and control early introductions of the virus into the UK, we PCR-tested archival specimens collected on admission to a large UK teaching hospital who retrospectively were identified as having a clinical presentation compatible with COVID-19. In addition, we screened available archival specimens submitted for respiratory virus diagnosis, and dating back to early January 2020, for the presence of SARS-CoV-2 RNA. Our data provides evidence for widespread community circulation of SARS-CoV2 in early February 2020 and into March that was undetected at the time due to restrictive case definitions informing testing policy. Genome sequence data showed that many of these early cases were infected with a distinct lineage of the virus. Sequences obtained from the first officially recorded case in Nottinghamshire - a traveller returning from Daegu, South Korea - also clustered with these early UK sequences suggesting acquisition of the virus occurred in the UK and not Daegu. Analysis of a larger sample of sequences obtained in the Nottinghamshire area revealed multiple viral introductions, mainly in late February and through March. These data highlight the importance of timely and extensive community testing to prevent future widespread transmission of the virus.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20164988

RESUMO

The COVID-19 pandemic, which began in 2020 is testing economic resilience and surge capacity of healthcare providers worldwide. At time of writing, positive detection of the SARS-CoV-2 virus remains the only method for diagnosing COVID-19 infection. Rapid upscaling of national SARS-CoV-2 genome testing presented challenges: 1) Unpredictable supply chains of reagents and kits for virus inactivation, RNA extraction and PCR-detection of viral genomes 2) Rapid time to result of <24 hours is required in order to facilitate timely infection control measures. We evaluated whether alternative commercially available kits provided sensitivity and accuracy of SARS-CoV-2 genome detection comparable to those used by regional National Healthcare Services (NHS), and asked if detection was altered by heat inactivation, an approach for rapid one-step viral inactivation and RNA extraction without chemicals or kits. Using purified RNA, we found the CerTest VIASURE kit to be comparable to Altona RealStar system currently in use, and further showed that both diagnostic kits performed similarly in the BioRad CFX96 and Roche LightCycler 480 II machines. Additionally, both kits were comparable to a third alternative using a combination of Quantabio qScript 1-step qRT-PCR mix and CDC-accredited N1 and N2 primer/probes when looking specifically at borderline samples. Importantly, when using the kits in an extraction-free protocol, following heat inactivation, we saw differing results, with the combined Quantabio-CDC assay showing superior accuracy and sensitivity. In particular, detection using the CDC N2 probe following the extraction-free protocol was highly correlated to results generated with the same probe following RNA extraction and reported clinically (n=127; R2=0.9259). Our results demonstrate that sample treatment can greatly affect the downstream performance of SARS-CoV-2 diagnostic kits, with varying impact depending on the kit. We also showed that one-step heat inactivation methods could reduce time from swab receipt to outcome of test result. Combined, these findings present alternatives to the protocols in use and can serve to alleviate any arising supply chain issues at different points in the workflow, whilst accelerating testing, and reducing cost and environmental impact.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...