Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Mol Immunol ; 20(12): 1499-1512, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37990034

RESUMO

Functional Tregs play a key role in tumor development and progression, representing a major barrier to anticancer immunity. The mechanisms by which Tregs are generated in cancer and the influence of the tumor microenvironment on these processes remain incompletely understood. Herein, by using NMR, chemoenzymatic structural assays and a plethora of in vitro and in vivo functional analyses, we demonstrate that the tumoral carbohydrate A10 (Ca10), a cell-surface carbohydrate derived from Ehrlich's tumor (ET) cells, is a heparan sulfate-related proteoglycan that enhances glycolysis and promotes the development of tolerogenic features in human DCs. Ca10-stimulated human DCs generate highly suppressive Tregs by mechanisms partially dependent on metabolic reprogramming, PD-L1, IL-10, and IDO. Ca10 also reprograms the differentiation of human monocytes into DCs with tolerogenic features. In solid ET-bearing mice, we found positive correlations between Ca10 serum levels, tumor size and splenic Treg numbers. Administration of isolated Ca10 also increases the proportion of splenic Tregs in tumor-free mice. Remarkably, we provide evidence supporting the presence of a circulating human Ca10 counterpart (Ca10H) and show, for the first time, that serum levels of Ca10H are increased in patients suffering from different cancer types compared to healthy individuals. Of note, these levels are higher in prostate cancer patients with bone metastases than in prostate cancer patients without metastases. Collectively, we reveal novel molecular mechanisms by which heparan sulfate-related structures associated with tumor cells promote the generation of functional Tregs in cancer. The discovery of this novel structural-functional relationship may open new avenues of research with important clinical implications in cancer treatment.


Assuntos
Neoplasias da Próstata , Linfócitos T Reguladores , Masculino , Humanos , Animais , Camundongos , Glicosaminoglicanos/metabolismo , Células Dendríticas , Heparitina Sulfato/metabolismo , Microambiente Tumoral
2.
JACS Au ; 3(3): 868-878, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37006776

RESUMO

Influenza virus infection remains a threat to human health since viral hemagglutinins are constantly drifting, escaping infection and vaccine-induced antibody responses. Viral hemagglutinins from different viruses display variability in glycan recognition. In this context, recent H3N2 viruses have specificity for α2,6 sialylated branched N-glycans with at least three N-acetyllactosamine units (tri-LacNAc). In this work, we combined glycan arrays and tissue binding analyses with nuclear magnetic resonance experiments to characterize the glycan specificity of a family of H1 variants, including the one responsible for the 2009 pandemic outbreak. We also analyzed one engineered H6N1 mutant to understand if the preference for tri-LacNAc motifs could be a general trend in human-type receptor-adapted viruses. In addition, we developed a new NMR approach to perform competition experiments between glycans with similar compositions and different lengths. Our results point out that pandemic H1 viruses differ from previous seasonal H1 viruses by a strict preference for a minimum of di-LacNAc structural motifs.

3.
Int J Mol Sci ; 23(3)2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35163307

RESUMO

The study of endoxylanases as catalysts to valorize hemicellulosic residues and to obtain glycosides with improved properties is a topic of great industrial interest. In this work, a GH10 ß-1,4-endoxylanase (XynSOS), from the ascomycetous fungus Talaromyces amestolkiae, has been heterologously produced in Pichia pastoris, purified, and characterized. rXynSOS is a highly glycosylated monomeric enzyme of 53 kDa that contains a functional CBM1 domain and shows its optimal activity on azurine cross-linked (AZCL)-beechwood xylan at 70 °C and pH 5. Substrate specificity and kinetic studies confirmed its versatility and high affinity for beechwood xylan and wheat arabinoxylan. Moreover, rXynSOS was capable of transglycosylating phenolic compounds, although with low efficiencies. For expanding its synthetic capacity, a glycosynthase variant of rXynSOS was developed by directed mutagenesis, replacing its nucleophile catalytic residue E236 by a glycine (rXynSOS-E236G). This novel glycosynthase was able to synthesize ß-1,4-xylooligosaccharides (XOS) of different lengths (four, six, eight, and ten xylose units), which are known to be emerging prebiotics. rXynSOS-E236G was also much more active than the native enzyme in the glycosylation of a broad range of phenolic compounds with antioxidant properties. The interesting capabilities of rXynSOS and its glycosynthase variant make them promising tools for biotechnological applications.


Assuntos
Glucuronatos/metabolismo , Glicosídeos/metabolismo , Oligossacarídeos/metabolismo , Fenóis/metabolismo , Talaromyces/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Cinética , Pichia/metabolismo , Prebióticos/microbiologia , Especificidade por Substrato , Xilanos/metabolismo , Xilose/metabolismo
4.
Curr Med Chem ; 29(7): 1147-1172, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34225601

RESUMO

Carbohydrates, either free or as glycans conjugated with other biomolecules, participate in a plethora of essential biological processes. Their apparent simplicity in terms of chemical functionality hides an extraordinary diversity and structural complexity. Deeply deciphering at the atomic level their structures is essential to understand their biological function and activities, but it is still a challenging task in need of complementary approaches and no generalized procedures are available to address the study of such complex, natural glycans. The versatility of Nuclear Magnetic Resonance spectroscopy (NMR) often makes it the preferred choice to study glycans and carbohydrates in solution media. The most basic NMR parameters, namely chemical shifts, coupling constants, and nuclear Overhauser effects, allow defining short or repetitive chain sequences and characterize their structures and local geometries either in the free state or when interacting with other biomolecules, rendering additional information on the molecular recognition processes. The increased accessibility to carbohydrate molecules extensively or selectively labeled with 13C is boosting the resolution and detail which analyzed glycan structures can reach. In turn, structural information derived from NMR complemented with molecular modeling and theoretical calculations can also provide dynamic information on the conformational flexibility of carbohydrate structures. Furthermore, using partially oriented media or paramagnetic perturbations, it has been possible to introduce additional longrange observables rendering structural information on longer and branched glycan chains. In this review, we provide examples of these studies and an overview of the recent and most relevant NMR applications in the glycobiology field.


Assuntos
Carboidratos , Polissacarídeos , Carboidratos/química , Humanos , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Conformação Molecular , Polissacarídeos/química
5.
Antioxidants (Basel) ; 12(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36670947

RESUMO

Resveratrol is a natural polyphenol with antioxidant activity and numerous health benefits. However, in vivo application of this compound is still a challenge due to its poor aqueous solubility and rapid metabolism, which leads to an extremely low bioavailability in the target tissues. In this work, rXynSOS-E236G glycosynthase, designed from a GH10 endoxylanase of the fungus Talaromyces amestolkiae, was used to glycosylate resveratrol by using xylobiosyl-fluoride as a sugar donor. The major product from this reaction was identified by NMR as 3-O-ꞵ-d-xylobiosyl resveratrol, together with other glycosides produced in a lower amount as 4'-O-ꞵ-d-xylobiosyl resveratrol and 3-O-ꞵ-d-xylotetraosyl resveratrol. The application of response surface methodology made it possible to optimize the reaction, producing 35% of 3-O-ꞵ-d-xylobiosyl resveratrol. Since other minor glycosides are obtained in addition to this compound, the transformation of the phenolic substrate amounted to 70%. Xylobiosylation decreased the antioxidant capacity of resveratrol by 2.21-fold, but, in return, produced a staggering 4,866-fold improvement in solubility, facilitating the delivery of large amounts of the molecule and its transit to the colon. A preliminary study has also shown that the colonic microbiota is capable of releasing resveratrol from 3-O-ꞵ-d-xylobiosyl resveratrol. These results support the potential of mutagenic variants of glycosyl hydrolases to synthesize highly soluble resveratrol glycosides, which could, in turn, improve the bioavailability and bioactive properties of this polyphenol.

6.
Biochemistry ; 60(17): 1327-1336, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33724805

RESUMO

The human macrophage galactose lectin (MGL) is an endocytic type II transmembrane receptor expressed on immature monocyte-derived dendritic cells and activated macrophages and plays a role in modulating the immune system in response to infections and cancer. MGL contains an extracellular calcium-dependent (C-type) carbohydrate recognition domain (CRD) that specifically binds terminal N-acetylgalactosamine glycan residues such as the Tn and sialyl-Tn antigens found on tumor cells, as well as other N- and O-glycans displayed on certain viruses and parasites. Even though the glycan specificity of MGL is known and several binding glycoproteins have been identified, the molecular basis for substrate recognition has remained elusive due to the lack of high-resolution structures. Here we present crystal structures of the MGL CRD at near endosomal pH and in several complexes, which reveal details of the interactions with the natural ligand, GalNAc, the cancer-associated Tn-Ser antigen, and a synthetic GalNAc mimetic ligand. Like the asialoglycoprotein receptor, additional calcium atoms are present and contribute to stabilization of the MGL CRD fold. The structure provides the molecular basis for preferential binding of N-acetylgalactosamine over galactose and prompted the re-evaluation of the binding modes previously proposed in solution. Saturation transfer difference nuclear magnetic resonance data acquired using the MGL CRD and interpreted using the crystal structure indicate a single binding mode for GalNAc in solution. Models of MGL1 and MGL2, the mouse homologues of MGL, explain how these proteins might recognize LewisX and GalNAc, respectively.


Assuntos
Acetilgalactosamina/metabolismo , Antígenos Glicosídicos Associados a Tumores/metabolismo , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Animais , Cristalografia por Raios X , Humanos , Ligantes , Camundongos , Ligação Proteica , Domínios Proteicos
7.
Blood ; 137(25): 3484-3494, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-33651882

RESUMO

Factor H (FH)-related proteins are a group of partly characterized complement proteins thought to promote complement activation by competing with FH in binding to surface-bound C3b. Among them, FH-related protein 1 (FHR-1) is remarkable because of its association with atypical hemolytic uremic syndrome (aHUS) and other important diseases. Using a combination of biochemical, immunological, nuclear magnetic resonance, and computational approaches, we characterized a series of FHR-1 mutants (including 2 associated with aHUS) and unraveled the molecular bases of the so-called deregulation activity of FHR-1. In contrast with FH, FHR-1 lacks the capacity to bind sialic acids, which prevents C3b-binding competition between FH and FHR-1 in host-cell surfaces. aHUS-associated FHR-1 mutants are pathogenic because they have acquired the capacity to bind sialic acids, which increases FHR-1 avidity for surface-bound C3-activated fragments and results in C3b-binding competition with FH. FHR-1 binds to native C3, in addition to C3b, iC3b, and C3dg. This unexpected finding suggests that the mechanism by which surface-bound FHR-1 promotes complement activation is the attraction of native C3 to the cell surface. Although C3b-binding competition with FH is limited to aHUS-associated mutants, all surface-bound FHR-1 promotes complement activation, which is delimited by the FHR-1/FH activity ratio. Our data indicate that FHR-1 deregulation activity is important to sustain complement activation and C3 deposition at complement-activating surfaces. They also support that abnormally elevated FHR-1/FH activity ratios would perpetuate pathological complement dysregulation at complement-activating surfaces, which may explain the association of FHR-1 quantitative variations with diseases.


Assuntos
Síndrome Hemolítico-Urêmica Atípica , Proteínas Sanguíneas/química , Complemento C3/química , Mutação , Animais , Proteínas Sanguíneas/genética , Proteínas Sanguíneas/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Ligação Proteica
8.
Molecules ; 26(2)2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33451060

RESUMO

Cyclopropanated iminosugars have a locked conformation that may enhance the inhibitory activity and selectivity against different glycosidases. We show the synthesis of new cyclopropane-containing piperidines bearing five stereogenic centers from natural amino acids l-serine and l-alanine. Those prepared from the latter amino acid may mimic l-fucose, a natural-occurring monosaccharide involved in many molecular recognition events. Final compounds prepared from l-serine bear S configurations on the C5 position. The synthesis involved a stereoselective cyclopropanation reaction of an α,ß-unsaturated piperidone, which was prepared through a ring-closing metathesis. The final compounds were tested as possible inhibitors of different glycosidases. The results, although, in general, with low inhibition activity, showed selectivity, depending on the compound and enzyme, and in some cases, an unexpected activity enhancement was observed.


Assuntos
Aminoácidos/química , Produtos Biológicos/química , Inibidores Enzimáticos/farmacologia , Imino Açúcares/farmacologia , Animais , Café/enzimologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Geobacillus stearothermophilus/enzimologia , Glicosídeo Hidrolases/antagonistas & inibidores , Glicosídeo Hidrolases/metabolismo , Caracois Helix/enzimologia , Imino Açúcares/síntese química , Imino Açúcares/química , Estrutura Molecular , Phaseolus/enzimologia
9.
Nat Commun ; 11(1): 4864, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32978392

RESUMO

The synthesis of customized glycoconjugates constitutes a major goal for biocatalysis. To this end, engineered glycosidases have received great attention and, among them, thioglycoligases have proved useful to connect carbohydrates to non-sugar acceptors. However, hitherto the scope of these biocatalysts was considered limited to strong nucleophilic acceptors. Based on the particularities of the GH3 glycosidase family active site, we hypothesized that converting a suitable member into a thioglycoligase could boost the acceptor range. Herein we show the engineering of an acidophilic fungal ß-xylosidase into a thioglycoligase with broad acceptor promiscuity. The mutant enzyme displays the ability to form O-, N-, S- and Se- glycosides together with sugar esters and phosphoesters with conversion yields from moderate to high. Analyses also indicate that the pKa of the target compound was the main factor to determine its suitability as glycosylation acceptor. These results expand on the glycoconjugate portfolio attainable through biocatalysis.


Assuntos
Tolerância a Medicamentos/fisiologia , Fungos/enzimologia , Fungos/metabolismo , Xilosidases/química , Xilosidases/metabolismo , Biocatálise , Domínio Catalítico , Fungos/efeitos dos fármacos , Glicoconjugados/metabolismo , Glicosídeo Hidrolases/metabolismo , Glicosídeos/química , Glicosilação , Concentração de Íons de Hidrogênio , Cinética , Modelos Moleculares , Mutagênese , Especificidade por Substrato , Talaromyces/enzimologia , Talaromyces/genética , Xilosidases/genética
10.
Pharmaceuticals (Basel) ; 13(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759765

RESUMO

Fluorinated glycomimetics are frequently employed to study and eventually modulate protein-glycan interactions. However, complex glycans and their glycomimetics may display multiple binding epitopes that enormously complicate the access to a complete picture of the protein-ligand complexes. We herein present a new methodology based on the synergic combination of experimental 19F-based saturation transfer difference (STD) NMR data with computational protocols, applied to analyze the interaction between DC-SIGN, a key lectin involved in inflammation and infection events with the trifluorinated glycomimetic of the trimannoside core, ubiquitous in human glycoproteins. A novel 2D-STD-TOCSYreF NMR experiment was employed to obtain the experimental STD NMR intensities, while the Complete Relaxation Matrix Analysis (CORCEMA-ST) was used to predict that expected for an ensemble of geometries extracted from extensive MD simulations. Then, an in-house built computer program was devised to find the ensemble of structures that provide the best fit between the theoretical and the observed STD data. Remarkably, the experimental STD profiles obtained for the ligand/DC-SIGN complex could not be satisfactorily explained by a single binding mode, but rather with a combination of different modes coexisting in solution. Therefore, the method provides a precise view of those ligand-receptor complexes present in solution.

11.
Microb Cell Fact ; 19(1): 127, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32522206

RESUMO

BACKGROUND: The interest for finding novel ß-glucosidases that can improve the yields to produce second-generation (2G) biofuels is still very high. One of the most desired features for these enzymes is glucose tolerance, which enables their optimal activity under high-glucose concentrations. Besides, there is an additional focus of attention on finding novel enzymatic alternatives for glycoside synthesis, for which a mutated version of glycosidases, named glycosynthases, has gained much interest in recent years. RESULTS: In this work, a glucotolerant ß-glucosidase (BGL-1) from the ascomycete fungus Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris, purified, and characterized. The enzyme showed good efficiency on p-nitrophenyl glucopyranoside (pNPG) (Km= 3.36 ± 0.7 mM, kcat= 898.31 s-1), but its activity on cellooligosaccharides, the natural substrates of these enzymes, was much lower, which could limit its exploitation in lignocellulose degradation applications. Interestingly, when examining the substrate specificity of BGL-1, it showed to be more active on sophorose, the ß-1,2 disaccharide of glucose, than on cellobiose. Besides, the transglycosylation profile of BGL-1 was examined, and, for expanding its synthetic capacities, it was converted into a glycosynthase. The mutant enzyme, named BGL-1-E521G, was able to use α-D-glucosyl-fluoride as donor in glycosylation reactions, and synthesized glucosylated derivatives of different pNP-sugars in a regioselective manner, as well as of some phenolic compounds of industrial interest, such as epigallocatechin gallate (EGCG). CONCLUSIONS: In this work, we report the characterization of a novel glucotolerant 1,2-ß-glucosidase, which also has a considerable activity on 1,4-ß-glucosyl bonds, that has been cloned in P. pastoris, produced, purified and characterized. In addition, the enzyme was converted into an efficient glycosynthase, able to transfer glucose molecules to a diversity of acceptors for obtaining compounds of interest. The remarkable capacities of BGL-1 and its glycosynthase mutant, both in hydrolysis and synthesis, suggest that it could be an interesting tool for biotechnological applications.


Assuntos
Talaromyces/enzimologia , beta-Glucosidase , Clonagem Molecular , Glicosilação , Hidrólise , Cinética , Fenóis/química , Saccharomycetales/genética , Especificidade por Substrato , beta-Glucosidase/biossíntese , beta-Glucosidase/química , beta-Glucosidase/isolamento & purificação
12.
Chem Sci ; 12(2): 576-589, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34163788

RESUMO

Endolysins are bacteriophage-encoded peptidoglycan hydrolases targeting the cell wall of host bacteria via their cell wall-binding domains (CBDs). The molecular basis for selective recognition of surface carbohydrate ligands by CBDs remains elusive. Here, we describe, in atomic detail, the interaction between the Listeria phage endolysin domain CBD500 and its cell wall teichoic acid (WTA) ligands. We show that 3'O-acetylated GlcNAc residues integrated into the WTA polymer chain are the key epitope recognized by a CBD binding cavity located at the interface of tandem copies of beta-barrel, pseudo-symmetric SH3b-like repeats. This cavity consists of multiple aromatic residues making extensive interactions with two GlcNAc acetyl groups via hydrogen bonds and van der Waals contacts, while permitting the docking of the diastereomorphic ligands. Our multidisciplinary approach tackled an extremely challenging protein-glycopolymer complex and delineated a previously unknown recognition mechanism by which a phage endolysin specifically recognizes and targets WTA, suggesting an adaptable model for regulation of endolysin specificity.

13.
Microb Cell Fact ; 18(1): 174, 2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31601204

RESUMO

BACKGROUND: Currently, industrial societies are seeking for green alternatives to conventional chemical synthesis. This demand has merged with the efforts to convert lignocellulosic biomass into value-added products. In this context, xylan, as one of main components of lignocellulose, has emerged as a raw material with high potential for advancing towards a sustainable economy. RESULTS: In this study, the recombinant endoxylanase rXynM from the ascomycete Talaromyces amestolkiae has been heterologously expressed in Pichia pastoris and used as one of the catalysts of an enzyme cascade developed to synthesize the antiproliferative 2-(6-hydroxynaphthyl) ß-D-xylopyranoside, by transglycosylation of 2,6-dihydroxynaphthalene. The approach combines the use of two fungal xylanolytic enzymes, rXynM and the ß-xylosidase rBxTW1 from the same fungus, with the cost-effective substrate xylan. The reaction conditions for the cascade were optimized by a Central Composite Design. Maximal productions of 0.59 and 0.38 g/L were reached using beechwood xylan and birchwood xylan, respectively. For comparison, xylans from other sources were tested in the same reaction, suggesting that a specific optimization is required for each xylan variety. The results obtained using this enzyme cascade and xylan were similar or better to those previously reported for a single catalyst and xylobiose, an expensive sugar donor. CONCLUSIONS: Beechwood and birchwood xylan, two polysaccharides easily available from biomass, were used in a novel enzyme cascade to synthetize an antiproliferative agent. The approach represents a green alternative to the conventional chemical synthesis of 2-(6-hydroxynaphthyl) ß-D-xylopyranoside using a cost-effective substrate. The work highlights the role of xylan as a raw material for producing value-added products and the potential of fungal xylanolytic enzymes in the biomass conversion.


Assuntos
Endo-1,4-beta-Xilanases/biossíntese , Glicosídeos/biossíntese , Talaromyces/enzimologia , Xilanos/metabolismo , Clonagem Molecular , Naftóis , Pichia/genética
14.
Carbohydr Polym ; 224: 115133, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31472863

RESUMO

An unprecedented approach towards oligosaccharides containing N-acetylglucosamine-N-acetylmuramic (NAG-NAM) units was developed. These novel bacterial cell wall surrogates were obtained from chitosan via a top down approach involving both chemical and enzymatic reactions. The chemical modification of chitosan using a molecular clamp based strategy, allowed obtaining N-acetylglucosamine-N-acetylmuramic (NAG-NAM) containing oligomers. Intercalation of NAM residues was confirmed through the analysis of oligosaccharide fragments from enzymatic digestion and it was found that this route affords NAG-NAM containing oligosaccharides in 33% yield. These oligosaccharides mimic the carbohydrate basic skeleton of most bacterial cell surfaces. The oligosaccharides prepared are biologically relevant and will serve as a platform for further molecular recognition studies with different receptors and enzymes of both bacterial cell wall and innate immune system. This strategy combining both chemical modification and enzymatic digestion provides a novel and simple route for an easy access to bacterial cell wall fragments - biologically important targets.


Assuntos
Acetilglucosamina/química , Quitosana/química , Ácidos Murâmicos/química , Oligossacarídeos/química , Endopeptidases/metabolismo , Monossacarídeos/análise , Muramidase/metabolismo , Oligossacarídeos/metabolismo
15.
ACS Chem Biol ; 14(7): 1660-1671, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31283166

RESUMO

The dendritic cell-specific intracellular adhesion molecule-3-grabbing nonintegrin (DC-SIGN) is an important receptor of the immune system. Besides its role as pathogen recognition receptor (PRR), it also interacts with endogenous glycoproteins through the specific recognition of self-glycan epitopes, like LeX. However, this lectin represents a paradigmatic case of glycan binding promiscuity, and it also has been shown to recognize antigens with α1-α2 linked fucose, such as the histo blood group antigens, with similar affinities to LeX. Herein, we have studied the interaction in solution between DC-SIGN and the blood group A and B antigens, to get insights into the atomic details of such interaction. With a combination of different NMR experiments, we demonstrate that the Fuc coordinates the primary Ca2+ ion with a single binding mode through 3-OH and 4-OH. The terminal αGal/αGalNAc affords marginal direct polar contacts with the protein, but provides a hydrophobic hook in which V351 of the lectin perfectly fits. Moreover, we have found that αGal, but not αGalNAc, is a weak binder itself for DC-SIGN, which could endow an additional binding mode for the blood group B antigen, but not for blood group A.


Assuntos
Sistema ABO de Grupos Sanguíneos/metabolismo , Autoantígenos/metabolismo , Moléculas de Adesão Celular/metabolismo , Lectinas Tipo C/metabolismo , Receptores de Superfície Celular/metabolismo , Sistema ABO de Grupos Sanguíneos/química , Autoantígenos/química , Sítios de Ligação , Moléculas de Adesão Celular/química , Fucose/química , Fucose/metabolismo , Humanos , Lectinas Tipo C/química , Simulação de Acoplamento Molecular , Ligação Proteica , Receptores de Superfície Celular/química
16.
Microb Cell Fact ; 18(1): 97, 2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31151435

RESUMO

BACKGROUND: Transglycosylation represents one of the most promising approaches for obtaining novel glycosides, and plant phenols and polyphenols are emerging as one of the best targets for creating new molecules with enhanced capacities. These compounds can be found in diet and exhibit a wide range of bioactivities, such as antioxidant, antihypertensive, antitumor, neuroprotective and anti-inflammatory, and the eco-friendly synthesis of glycosides from these molecules can be a suitable alternative for increasing their health benefits. RESULTS: Transglycosylation experiments were carried out using different GH3 ß-glucosidases from the fungus Talaromyces amestolkiae. After a first screening with a wide variety of potential transglycosylation acceptors, mono-glucosylated derivatives of hydroxytyrosol, vanillin alcohol, 4-hydroxybenzyl alcohol, and hydroquinone were detected. The reaction products were analyzed by thin-layer chromatography, high-pressure liquid chromatography, and mass spectrometry. Hydroxytyrosol and vanillyl alcohol were selected as the best options for transglycosylation optimization, with a final conversion yield of 13.8 and 19% of hydroxytyrosol and vanillin glucosides, respectively. NMR analysis confirmed the structures of these compounds. The evaluation of the biological effect of these glucosides using models of breast cancer cells, showed an enhancement in the anti-proliferative capacity of the vanillin derivative, and an improved safety profile of both glucosides. CONCLUSIONS: GH3 ß-glucosidases from T. amestolkiae expressed in P. pastoris were able to transglycosylate a wide variety of acceptors. Between them, phenolic molecules like hydroxytyrosol, vanillin alcohol, 4-hydroxybenzyl alcohol, and hydroquinone were the most suitable for its interesting biological properties. The glycosides of hydroxytyrosol and vanillin were tested, and they improved the biological activities of the original aglycons on breast cancer cells.


Assuntos
Neoplasias da Mama , Celulases/metabolismo , Glicosídeos/farmacologia , Talaromyces/enzimologia , Benzaldeídos/metabolismo , Álcoois Benzílicos/metabolismo , Celulases/química , Celulases/isolamento & purificação , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosilação , Humanos , Hidroquinonas/metabolismo , Células MCF-7 , Álcool Feniletílico/análogos & derivados , Álcool Feniletílico/metabolismo , Especificidade por Substrato
17.
Angew Chem Int Ed Engl ; 58(22): 7268-7272, 2019 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-30942512

RESUMO

Ligand conformational entropy plays an important role in carbohydrate recognition events. Glycans are characterized by intrinsic flexibility around the glycosidic linkages, thus in most cases, loss of conformational entropy of the sugar upon complex formation strongly affects the entropy of the binding process. By employing a multidisciplinary approach combining structural, conformational, binding energy, and kinetic information, we investigated the role of conformational entropy in the recognition of the histo blood-group antigens A and B by human galectin-3, a lectin of biomedical interest. We show that these rigid natural antigens are pre-organized ligands for hGal-3, and that restriction of the conformational flexibility by the branched fucose (Fuc) residue modulates the thermodynamics and kinetics of the binding process. These results highlight the importance of glycan flexibility and provide inspiration for the design of high-affinity ligands as antagonists for lectins.


Assuntos
Antígenos de Grupos Sanguíneos/metabolismo , Entropia , Fucose/metabolismo , Galectina 3/metabolismo , Termodinâmica , Sítios de Ligação , Antígenos de Grupos Sanguíneos/química , Proteínas Sanguíneas , Cristalografia por Raios X , Fucose/química , Galectina 3/química , Galectinas , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Ligação Proteica
18.
Microb Cell Fact ; 15(1): 171, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716291

RESUMO

BACKGROUND: Glycosides are compounds displaying crucial biological roles and plenty of applications. Traditionally, these molecules have been chemically obtained, but its efficient production is limited by the lack of regio- and stereo-selectivity of the chemical synthesis. As an interesting alternative, glycosidases are able to catalyze the formation of glycosides in a process considered green and highly selective. In this study, we report the expression and characterization of a fungal ß-xylosidase in Pichia pastoris. The transglycosylation potential of the enzyme was evaluated and its applicability in the synthesis of a selective anti-proliferative compound demonstrated. RESULTS: The ß-xylosidase BxTW1 from the ascomycete fungus Talaromyces amestolkiae was cloned and expressed in Pichia pastoris GS115. The yeast secreted 8 U/mL of ß-xylosidase that was purified by a single step of cation-exchange chromatography. rBxTW1 in its active form is an N-glycosylated dimer of about 200 kDa. The enzyme was biochemically characterized displaying a K m and k cat against p-nitrophenyl-ß-D-xylopyranoside of 0.20 mM and 69.3 s-1 respectively, and its maximal activity was achieved at pH 3 and 60 °C. The glycan component of rBxTW1 was also analyzed in order to interpret the observed loss of stability and maximum velocity when compared with the native enzyme. A rapid screening of aglycone specificity was performed, revealing a remarkable high number of potential transxylosylation acceptors for rBxTW1. Based on this analysis, the enzyme was successfully tested in the synthesis of 2-(6-hydroxynaphthyl) ß-D-xylopyranoside, a well-known selective anti-proliferative compound, enzymatically obtained for the first time. The application of response surface methodology, following a Box-Behnken design, enhanced this production by eightfold, fitting the reaction conditions into a multiparametric model. The naphthyl derivative was purified and its identity confirmed by NMR. CONCLUSIONS: A ß-xylosidase from T. amestolkiae was produced in P. pastoris and purified. The final yields were much higher than those attained for the native protein, although some loss of stability and maximum velocity was observed. rBxTW1 displayed remarkable acceptor versatility in transxylosylation, catalyzing the synthesis of a selective antiproliferative compound, 2-(6-hydroxynaphthyl) ß-D-xylopyranoside. These results evidence the interest of rBxTW1 for transxylosylation of relevant products with biotechnological interest.


Assuntos
Glicosídeos/biossíntese , Pichia/genética , Talaromyces/enzimologia , Xilosidases/genética , Xilosidases/metabolismo , Sequência de Aminoácidos , Biocatálise , Glicosídeos/química , Glicosídeos/metabolismo , Glicosilação , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Ressonância Magnética , Naftóis/química , Naftóis/metabolismo , Pichia/metabolismo , Especificidade por Substrato , Talaromyces/genética , Xilose/metabolismo
19.
J Am Chem Soc ; 138(29): 9193-204, 2016 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-27337563

RESUMO

Peptidoglycan is a fundamental structure for most bacteria. It contributes to the cell morphology and provides cell wall integrity against environmental insults. While several studies have reported a significant degree of variability in the chemical composition and organization of peptidoglycan in the domain Bacteria, the real diversity of this polymer is far from fully explored. This work exploits rapid ultraperformance liquid chromatography and multivariate data analysis to uncover peptidoglycan chemical diversity in the Class Alphaproteobacteria, a group of Gram negative bacteria that are highly heterogeneous in terms of metabolism, morphology and life-styles. Indeed, chemometric analyses revealed novel peptidoglycan structures conserved in Acetobacteria: amidation at the α-(l)-carboxyl of meso-diaminopimelic acid and the presence of muropeptides cross-linked by (1-3) l-Ala-d-(meso)-diaminopimelate cross-links. Both structures are growth-controlled modifications that influence sensitivity to Type VI secretion system peptidoglycan endopeptidases and recognition by the Drosophila innate immune system, suggesting relevant roles in the environmental adaptability of these bacteria. Collectively our findings demonstrate the discriminative power of chemometric tools on large cell wall-chromatographic data sets to discover novel peptidoglycan structural properties in bacteria.


Assuntos
Parede Celular/metabolismo , Biologia Computacional , Drosophila melanogaster/imunologia , Imunidade Inata/efeitos dos fármacos , Peptidoglicano/metabolismo , Peptidoglicano/farmacologia , Alphaproteobacteria/química , Alphaproteobacteria/citologia , Animais , Drosophila melanogaster/efeitos dos fármacos , Endopeptidases/metabolismo
20.
J Am Chem Soc ; 138(20): 6463-74, 2016 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-27123740

RESUMO

Development of strong and selective binders from promiscuous lead compounds represents one of the most expensive and time-consuming tasks in drug discovery. We herein present a novel fragment-based combinatorial strategy for the optimization of multivalent polyamine scaffolds as DNA/RNA ligands. Our protocol provides a quick access to a large variety of regioisomer libraries that can be tested for selective recognition by combining microdialysis assays with simple isotope labeling and NMR experiments. To illustrate our approach, 20 small libraries comprising 100 novel kanamycin-B derivatives have been prepared and evaluated for selective binding to the ribosomal decoding A-Site sequence. Contrary to the common view of NMR as a low-throughput technique, we demonstrate that our NMR methodology represents a valuable alternative for the detection and quantification of complex mixtures, even integrated by highly similar or structurally related derivatives, a common situation in the context of a lead optimization process. Furthermore, this study provides valuable clues about the structural requirements for selective A-site recognition.


Assuntos
Técnicas de Química Combinatória , Ressonância Magnética Nuclear Biomolecular/métodos , Ácidos Nucleicos/química , Bibliotecas de Moléculas Pequenas/química , Descoberta de Drogas , Canamicina/análogos & derivados , Canamicina/química , Microdiálise , Simulação de Dinâmica Molecular , Teoria Quântica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...