Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 18467, 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36323755

RESUMO

A theoretical analysis of binary collisions of quantum droplets under feasible experimental conditions is reported. Droplets formed from degenerate dilute Bose gases made up from binary mixtures of ultracold atoms are considered. Reliable expressions for the surface tension of the droplets are introduced based on a study of low energy excitations of their ground state within the random phase approximation. Their relevance is evaluated considering an estimation of the expected excitation energy having in mind the Thouless variational theorem. The surface tension expressions allow calculating the Weber number of the droplets involved in the collisions. Several regimes on the outcomes of the binary frontal collisions that range from the coalescence of the quantum droplets to their disintegration into smaller droplets are identified. Atoms losses of the droplets derived from self-evaporation and three-body scattering are quantified for both homo- and hetero-nuclear mixtures. Their control is mandatory for the observation of some interesting effects arising from droplets collisions.

2.
J Opt Soc Am A Opt Image Sci Vis ; 39(6): 996-1006, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-36215529

RESUMO

We present an ab initio numerical investigation of the internal conical refraction of structured light beams in a biaxial crystal. Starting from the solutions of the Fresnel equation, a theoretical analysis is developed without assuming any analytical approximation, thus obtaining a set of exact equations that can be solved by standard methods of integration for any impinging light beam. As examples of applications, we consider the particular cases of linearly and circularly polarized Gaussian and Bessel beams inside a KTP crystal. Numerical calculations follow the evolution of the refracted beam inside the crystal. It is seen that for realistic boundary conditions, a refraction cone appears in a certain range of distances within the crystal, and its shape is rather sensitive to the initial conditions.

3.
Phys Rev Lett ; 124(1): 010603, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31976715

RESUMO

We show that applying feedback and weak measurements to a quantum system induces phase transitions beyond the dissipative ones. Feedback enables controlling essentially quantum properties of the transition, i.e., its critical exponent, as it is driven by the fundamental quantum fluctuations due to measurement. Feedback provides the non-Markovianity and nonlinearity to the hybrid quantum-classical system, and enables simulating effects similar to spin-bath problems and Floquet time crystals with tunable long-range (long-memory) interactions.

4.
Phys Rev Lett ; 114(11): 113604, 2015 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-25839270

RESUMO

We show that the effect of measurement backaction results in the generation of multiple many-body spatial modes of ultracold atoms trapped in an optical lattice, when scattered light is detected. The multipartite mode entanglement properties and their nontrivial spatial overlap can be varied by tuning the optical geometry in a single setup. This can be used to engineer quantum states and dynamics of matter fields. We provide examples of multimode generalizations of parametric down-conversion, Dicke, and other states; investigate the entanglement properties of such states; and show how they can be transformed into a class of generalized squeezed states. Furthermore, we propose how these modes can be used to detect and measure entanglement in quantum gases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...