Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36771859

RESUMO

Eliminating warpage in injection molded polymeric parts is one of the most important problems in the injection molding industry today. This situation is critical in geometries that are particularly susceptible to warping due to their geometric features, and this occurs with topologies of great length and slenderness with high changes in thickness. These features are, in these special geometries, impossible to manufacture with traditional technologies to meet the dimensional and sustainable requirements of the industry. This paper presents an innovative green conformal cooling system that is specifically designed for parts with slender geometric shapes that are highly susceptible to warping. Additionally, the work presented by the authors investigates the importance of using highly conductive inserts made of steel alloys in combination with the use of additively manufactured conformal channels for reducing influential parameters, such as warpage, cooling time, and residual stresses in the complex manufacturing of long and slender parts. The results of this real industrial case study indicated that the use of conformal cooling layouts decreased the cycle time by 175.1 s-66% below the current cooling time; the temperature gradient by 78.5%-specifically, 18.16 °C; the residual stress by 39.78 MPa-or 81.88%; and the warpage by 6.9 mm-or 90.5%. In this way, it was possible to achieve a final warping in the complex geometry studied of 0.72 mm, which was under the maximum value required at the industrial level of 1 mm. The resulting values obtained by the researchers present a turning point from which the manufacturing and sustainability in the injection molding of said plastic geometries is possible, and they take into account that the geometric manufacturing features analyzed will present a great demand in the coming years in the auto parts manufacturing industry.

2.
Polymers (Basel) ; 13(18)2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34578016

RESUMO

The paper presents a hybrid cooling model based on the use of newly designed fluted conformal cooling channels in combination with inserts manufactured with Fastcool material. The hybrid cooling design was applied to an industrial part with complex geometry, high rates of thickness, and deep internal concavities. The geometry of the industrial part, besides the ejection system requirements of the mold, makes it impossible to cool it adequately using traditional or conformal standard methods. The addition of helical flutes in the circular conformal cooling channel surfaces generates a high number of vortexes and turbulences in the coolant flow, fostering the thermal exchange between the flow and the plastic part. The use of a Fastcool insert allows an optimal transfer of the heat flow in the slender core of the plastic part. An additional conformal cooling channel layout was required, not for the cooling of the plastic part, but for cooling the Fastcool insert, improving the thermal exchange between the Fastcool insert and the coolant flow. In this way, it is possible to maintain a constant heat exchange throughout the manufacturing cycle of the plastic part. A transient numerical analysis validated the improvements of the hybrid design presented, obtaining reductions in cycle time for the analyzed part by 27.442% in comparison with traditional cooling systems. The design of the 1 mm helical fluted conformal cooling channels and the use of the Fastcool insert cooled by a conformal cooling channel improves by 4334.9% the thermal exchange between the cooling elements and the plastic part. Additionally, it improves by 51.666% the uniformity and the gradient of the temperature map in comparison with the traditional cooling solution. The results obtained in this paper are in line with the sustainability criteria of green molds, centered on reducing the cycle time and improving the quality of the complex molded parts.

3.
Polymers (Basel) ; 13(17)2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34502983

RESUMO

The paper presents a new design of a triple hook-shaped conformal cooling channels for application in optical parts of great thickness, deep cores, and high dimensional and optical requirements. In these cases, the small dimensions of the core and the high requirements regarding warping and residual stresses prevent the use of traditional and standard conformal cooling channels. The research combines the use of a new triple hook-shaped conformal cooling system with the use of three independent conformal cooling sub-systems adapted to the complex geometric conditions of the sliders that completely surround the optical part under study. Finally, the new proposed conformal cooling design is complemented with a small insert manufactured with a new Fastcool material located in the internal area of the optical part beside the optical facets. A transient numerical analysis validates the set of improvements of the new proposed conformal cooling system presented. The results show an upgrade in thermal efficiency of 267.10% in comparison with the traditional solution. The increase in uniformity in the temperature gradient of the surface of the plastic part causes an enhancement in the field of displacement and in the map of residual stresses reducing the total maximum displacements by 36.343% and the Von-Mises maximum residual stress by 69.280% in comparison with the results obtained for the traditional cooling system. Additionally, the new design of cooling presented in this paper reduces the cycle time of the plastic part under study by 32.61%, compared to the traditional cooling geometry. This fact causes a very high economic and energy saving in line with the sustainability of a green mold. The improvement obtained in the technological parameters will make it possible to achieve the optical and functional requirements established for the correct operation of complex optical parts, where it is not possible to use traditional cooling channels or standard conformal cooling layouts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...