Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Int ; 183: 108420, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38199131

RESUMO

The production and use of nanomaterials (NMs) has increased over the last decades posing relevant questions on their risk after release and exposure of the population or sub-populations. In this context, the safe and sustainable by design (SSbD) approach framework requires to assess the potential hazard connected with intrinsic properties of the material along the whole life cycle of the NM and/or of the nano enabled products. Moreover, in the last years, the use of new advanced methodologies (NAMs) has increasingly gained attention for the use of alternative methods in obtaining relevant information on NMs hazard and risk. Considering the SSbD and the NAMs frameworks, within the ASINA H2020 project, we developed new NAMs devoted at improving the hazard and risk definition of different Ag and TiO2 NPs. The NAMs are developed considering two air liquid interface exposure systems, the Vitrocell Cloud-α and the Cultex Compact module and the relevant steps to obtain reproducible exposures are described. The new NAMs build on the integration of environmental monitoring campaigns at nano-coating production sites, allowing the quantification by the multiple-path particle dosimetry (MPPD) model of the expected lung deposited dose in occupational settings. Starting from this information, laboratory exposures to the aerosolized NPs are performed by using air liquid interface exposure equipment and human alveolar cells (epithelial cells and macrophages), replicating the doses of exposure estimated in workers by MPPD. Preliminary results on cell viability and inflammatory responses are reported. The proposed NAMs may represent possible future reference procedures for assessing the NPs inhalation toxicology, supporting risk assessment at real exposure doses.


Assuntos
Exposição por Inalação , Nanoestruturas , Humanos , Exposição por Inalação/análise , Pulmão , Células Epiteliais , Medição de Risco
2.
Nanomaterials (Basel) ; 13(3)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36770432

RESUMO

The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.

3.
Cells ; 11(15)2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35954168

RESUMO

Cell therapy is an important new method in medicine and is being used for the treatment of an increasing number of diseases. The challenge here is the precise tracking of cells in the body and their visualization. One method to visualize cells more easily with current methods is their labeling with nanoparticles before injection. However, for a safe and sufficient cell labeling, the nanoparticles need to remain in the cell and not be exocytosed. Here, we test a glucose-PEG-coated gold nanoparticle for the use of such a cell labeling. To this end, we investigated the nanoparticle exocytosis behavior from PLX-PAD cells, a cell type currently in clinical trials as a potential therapeutic agent. We showed that the amount of exocytosed gold from the cells was influenced by the uptake time and loading amount. This observation will facilitate the safe labeling of cells with nanoparticles in the future and contribute to stem cell therapy research.


Assuntos
Células-Tronco Mesenquimais , Nanopartículas Metálicas , Exocitose , Ouro , Células-Tronco Mesenquimais/metabolismo , Células Estromais
4.
Nanomaterials (Basel) ; 12(4)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35214925

RESUMO

Spray coatings' emissions impact to the environmental and occupational exposure were studied in a pilot-plant. Concentrations were measured inside the spray chamber and at the work room in Near-Field (NF) and Far-Field (FF) and mass flows were analyzed using a mechanistic model. The coating was performed in a ventilated chamber by spraying titanium dioxide doped with nitrogen (TiO2N) and silver capped by hydroxyethylcellulose (Ag-HEC) nanoparticles (NPs). Process emission rates to workplace, air, and outdoor air were characterized according to process parameters, which were used to assess emission factors. Full-scale production exposure potential was estimated under reasonable worst-case (RWC) conditions. The measured TiO2-N and Ag-HEC concentrations were 40.9 TiO2-µg/m3 and 0.4 Ag-µg/m3 at NF (total fraction). Under simulated RWC conditions with precautionary emission rate estimates, the worker's 95th percentile 8-h exposure was ≤171 TiO2 and ≤1.9 Ag-µg/m3 (total fraction). Environmental emissions via local ventilation (LEV) exhaust were ca. 35 and 140 mg-NP/g-NP, for TiO2-N and Ag-HEC, respectively. Under current situation, the exposure was adequately controlled. However, under full scale production with continuous process workers exposure should be evaluated with personal sampling if recommended occupational exposure levels for nanosized TiO2 and Ag are followed for risk management.

5.
Nanotoxicology ; 14(10): 1324-1341, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33108958

RESUMO

In this study, two sets of methyl-coated non-porous and mesoporous amorphous silica materials of two target sizes (100 and 300 nm; 10-844 m2/g) were used to investigate the potential role of specific surface area (SSA) and porosity on the oral toxicity in mice. Female Swiss mice were administered by oral gavage for 5 consecutive days. Two silica dose levels (100 and 1000 mg/kg b.w.) were tested for all four materials. All dispersions were characterized by transmission electron microscopy (TEM) and Nanoparticle tracking analysis (NTA). Batch dispersions of porous silica were rather unstable due to agglomeration. Animals were sacrificed one day after the last administration or after a three-week recovery period. No relevant toxicological effects were induced by any of the silica materials tested, as evaluated by body weight, gross pathology, relative organ weights (liver, spleen, kidneys), hematology, blood biochemistry, genotoxicity (Comet assay in jejunum cells and micronucleus test in peripheral blood erythrocytes), liver and small intestine histopathology, and intestinal inflammation. The presence of silica particles in the intestine was evaluated by a hyperspectral imaging microscopy system (CytoViva) using histological samples of jejunum tissue. Silica spectral signatures were found in jejunum samples with all the treatments, but only statistically significant in one of the treatment groups.


Assuntos
Jejuno/efeitos dos fármacos , Fígado/efeitos dos fármacos , Nanopartículas/toxicidade , Dióxido de Silício/toxicidade , Administração Oral , Animais , Ensaio Cometa , Relação Dose-Resposta a Droga , Eritrócitos/efeitos dos fármacos , Eritrócitos/patologia , Feminino , Jejuno/patologia , Rim/efeitos dos fármacos , Rim/patologia , Fígado/patologia , Camundongos , Testes para Micronúcleos , Nanopartículas/administração & dosagem , Nanopartículas/química , Tamanho do Órgão , Tamanho da Partícula , Porosidade , Dióxido de Silício/administração & dosagem , Dióxido de Silício/química , Baço/efeitos dos fármacos , Baço/patologia , Propriedades de Superfície
6.
Toxicol In Vitro ; 59: 70-77, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30953695

RESUMO

Some nanoparticles (NPs) have been shown to disrupt intestinal microvilli morphology in vitro, an alteration that could potentially affect nutrient absorption and barrier properties. This study aimed at evaluating the potential effect of CeO2 NPs (4-8 nm, citrate stabilized) on Caco-2 microvilli morphology. In addition to the standard Caco-2 cell clone, the C2BBe1 clone was used, as it is considered to develop a more homogeneous cellular morphology. Semiautomated microvilli density quantification and a new cell scoring approach were used to evaluate scanning electron microscopy (SEM) images. The quantification method made use of the whole micrograph surface, avoiding the need to choose subareas for analysis, and increasing the representativeness of the results when compared to previous studies. The main advantage of the scoring system is that it informs on the intercellular variability within a cell preparation. Benzalkonium was used as a positive control inducing toxicity and morphological alterations on microvilli. After three-week differentiation, Caco-2 cells were exposed to 100 µg/mL of CeO2 NPs for 24 h. The integrity of the membrane was evaluated by transepithelial electrical resistance (TEER) and thereafter processed for its observation by SEM. Results showed that both the standard Caco-2 clone and the C2BBe1 clone present notable morphological heterogeneity. The two evaluation approaches were able to identify morphological effects caused by the positive control, but did not detect statistically significant morphological alterations after exposure to CeO2 NPs.


Assuntos
Cério/toxicidade , Mucosa Intestinal/efeitos dos fármacos , Microvilosidades/efeitos dos fármacos , Nanopartículas/toxicidade , Células CACO-2 , Cério/química , Citratos/química , Citratos/toxicidade , Humanos , Nanopartículas/química
7.
Nanotoxicology ; 12(7): 652-676, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29732939

RESUMO

Within the EU FP-7 GUIDEnano project, a methodology was developed to systematically quantify the similarity between a nanomaterial (NM) that has been tested in toxicity studies and the NM for which risk needs to be evaluated, for the purpose of extrapolating toxicity data between the two materials. The methodology is a first attempt to use current knowledge on NM property-hazard relationships to develop a series of pragmatic and systematic rules for assessing NM similarity. Moreover, the methodology takes into account the practical feasibility, in that it is based on generally available NM characterization information. In addition to presenting this methodology, the lessons learnt and the challenges faced during its development are reported here. We conclude that there is a large gap between the information that is ideally needed and its application to real cases. The current database on property-hazard relationships is still very limited, which hinders the agreement on the key NM properties constituting the basis of the similarity assessment and the development of associated science-based and unequivocal rules. Currently, one of the most challenging NM properties to systematically assess in terms of similarity between two NMs is surface coating and functionalization, which lacks standardized parameters for description and characterization methodology. Standardization of characterization methods that lead to quantitative, unambiguous, and measurable parameters describing NM properties are necessary in order to build a sufficiently robust property-hazard database that allows for evidence-based refinement of our methodology, or any other attempt to systematically assess the similarity of NMs.


Assuntos
Segurança Química/métodos , Bases de Dados Factuais , Substâncias Perigosas/classificação , Nanoestruturas/classificação , Substâncias Perigosas/química , Substâncias Perigosas/toxicidade , Humanos , Nanoestruturas/química , Nanoestruturas/toxicidade , Relação Estrutura-Atividade
8.
Regul Toxicol Pharmacol ; 80: 46-59, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27255696

RESUMO

In the current paper, a new strategy for risk assessment of nanomaterials is described, which builds upon previous project outcomes and is developed within the FP7 NANoREG project. NANoREG has the aim to develop, for the long term, new testing strategies adapted to a high number of nanomaterials where many factors can affect their environmental and health impact. In the proposed risk assessment strategy, approaches for (Quantitative) Structure Activity Relationships ((Q)SARs), grouping and read-across are integrated and expanded to guide the user how to prioritise those nanomaterial applications that may lead to high risks for human health. Furthermore, those aspects of exposure, kinetics and hazard assessment that are most likely to be influenced by the nanospecific properties of the material under assessment are identified. These aspects are summarised in six elements, which play a key role in the strategy: exposure potential, dissolution, nanomaterial transformation, accumulation, genotoxicity and immunotoxicity. With the current approach it is possible to identify those situations where the use of nanospecific grouping, read-across and (Q)SAR tools is likely to become feasible in the future, and to point towards the generation of the type of data that is needed for scientific justification, which may lead to regulatory acceptance of nanospecific applications of these tools.


Assuntos
Nanopartículas/toxicidade , Nanotecnologia/métodos , Testes de Toxicidade/métodos , Animais , Biotransformação , Carga Corporal (Radioterapia) , Qualidade de Produtos para o Consumidor , Humanos , Sistema Imunitário/efeitos dos fármacos , Estrutura Molecular , Testes de Mutagenicidade , Nanopartículas/química , Nanopartículas/metabolismo , Segurança do Paciente , Relação Quantitativa Estrutura-Atividade , Medição de Risco , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...