Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; : e0074823, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38771057

RESUMO

The placenta is a critical barrier against viral, bacterial, and eukaryotic pathogens. For most teratogenic pathogens, the precise molecular mechanisms of placental resistance are still being unraveled. Given the importance of understanding these mechanisms and challenges in replicating trophoblast-pathogen interactions using in vitro models, we tested an existing stem-cell-derived model of trophoblast development for its relevance to infection with Toxoplasma gondii. We grew human trophoblast stem cells (TSCT) under conditions leading to either syncytiotrophoblast (TSSYN) or cytotrophoblast (TSCYT) and infected them with T. gondii. We evaluated T. gondii proliferation and invasion, cell ultrastructure, as well as for transcriptome changes after infection. TSSYNs cells showed similar ultrastructure compared to primary cells and villous explants when analyzed by transmission electron microscopy and scanning electron microscopy (SEM), a resistance to T. gondii adhesion could be visualized on the SEM level. Furthermore, TSSYNs were highly refractory to parasite adhesion and replication, while TSCYTs were not. RNA-seq data on mock-treated and infected cells identified differences between cell types as well as how they responded to T. gondii infection. We also evaluated if TSSC-derived SYNs and CYTs had distinct resistance profiles to another vertically transmitted facultative intracellular pathogen, Listeria monocytogenes. We demonstrate that TSSYNs are highly resistant to L. monocytogenes, while TSCYTs are not. Like T. gondii, TSSYN resistance to L. monocytogenes was at the level of bacterial adhesion. Altogether, our data indicate that stem-cell-derived trophoblasts recapitulate resistance profiles of primary cells to T. gondii and highlight the critical importance of the placental surface in cell-autonomous resistance to teratogens.IMPORTANCECongenital toxoplasmosis can cause a devastating consequence to the fetus. To reach the fetus's tissues, Toxoplasma gondii must cross the placenta barrier. However, how this parasite crosses the placenta and the precise molecular mechanisms of placental resistance to this parasite are still unknown. In this study, we aimed to characterize a new cellular model of human trophoblast stem cells to determine their resistance, susceptibility, and response to T. gondii. Syncytiotrophoblast derived from trophoblast stem cells recapitulate the resistance profile similarly to placenta cells. We also showed that these cells are highly resistant to Listeria monocytogenes, at the level of bacterial adhesion. Our results suggest that resisting pathogen adhesion/attachment may be a generalized mechanism of syncytiotrophoblast resistance, and trophoblast stem cells represent a promising model to investigate cell-intrinsic mechanisms of resistance to pathogen adhesion and replication.

2.
Infect Immun ; 92(2): e0049023, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38226817

RESUMO

Streptococcus pneumoniae is a Gram-positive bacterium and a significant health threat with the populations most at risk being children, the elderly, and the immuno-compromised. To colonize and transition into an invasive infectious organism, S. pneumoniae secretes virulence factors that are translocated across the bacterial membrane and destined for surface exposure, attachment to the cell wall, or secretion into the host. The surface exposed protein chaperones PrsA, SlrA, and HtrA facilitate S. pneumoniae protein secretion; however, the distinct roles contributed by each of these secretion chaperones have not been well defined. Tandem Mass-Tagged Mass Spectrometry and virulence, adhesion, competence, and cell wall integrity assays were used to interrogate the individual and collective contributions of PrsA, SlrA, and HtrA to multiple aspects of S. pneumoniae physiology and virulence. PrsA, SlrA, and HtrA were found to play critical roles in S. pneumoniae host cell infection and competence, and the absence of each of these secretion chaperones significantly altered the S. pneumoniae secretome in distinct ways. PrsA and SlrA were additionally found to contribute to cell wall assembly and resistance to cell wall-active antimicrobials and were important for enabling S. pneumoniae host cell adhesion during colonization and invasive infection. These findings serve to further illustrate the pivotal contributions of PrsA, SlrA, and HtrA to S. pneumoniae protein secretion and virulence.


Assuntos
Chaperonas Moleculares , Streptococcus pneumoniae , Criança , Humanos , Idoso , Chaperonas Moleculares/metabolismo , Fatores de Virulência/metabolismo , Virulência , Proteínas de Membrana/metabolismo , Resistência Microbiana a Medicamentos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
3.
J Biol Chem ; 300(1): 105582, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38141762

RESUMO

The intracellular parasite, Toxoplasma gondii, has developed sophisticated molecular strategies to subvert host processes and promote growth and survival. During infection, T. gondii replicates in a parasitophorous vacuole (PV) and modulates host functions through a network of secreted proteins. Of these, Mitochondrial Association Factor 1b (MAF1b) recruits host mitochondria to the PV, a process that confers an in vivo growth advantage, though the precise mechanisms remain enigmatic. To address this knowledge gap, we mapped the MAF1b interactome in human fibroblasts using a commercial Yeast-2-hybrid (Y2H) screen, which revealed several previously unidentified binding partners including the GAP domain of Ral GTPase Accelerating Protein α1 (RalGAPα1(GAP)). Recombinantly produced MAF1b and RalGAPα1(GAP) formed as a stable binary complex as shown by size exclusion chromatography with a Kd of 334 nM as measured by isothermal titration calorimetry (ITC). Notably, no binding was detected between RalGAPα1(GAP) and the structurally conserved MAF1b homolog, MAF1a, which does not recruit host mitochondria. Next, we used hydrogen deuterium exchange mass spectrometry (HDX-MS) to map the RalGAPα1(GAP)-MAF1b interface, which led to identification of the "GAP-binding loop" on MAF1b that was confirmed by mutagenesis and ITC to be necessary for complex formation. A high-confidence Alphafold model predicts the GAP-binding loop to lie at the RalGAPα1(GAP)-MAF1b interface further supporting the HDX-MS data. Mechanistic implications of a RalGAPα1(GAP)-MAF1b complex are discussed in the context of T. gondii infection and indicates that MAF1b may have evolved multiple independent functions to increase T. gondii fitness.


Assuntos
Proteínas Ativadoras de GTPase , Mitocôndrias , Mapas de Interação de Proteínas , Proteínas de Protozoários , Toxoplasma , Humanos , Sítios de Ligação , Calorimetria , Cromatografia em Gel , Fibroblastos/metabolismo , Fibroblastos/parasitologia , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Espectrometria de Massa com Troca Hidrogênio-Deutério , Mitocôndrias/metabolismo , Mitocôndrias/parasitologia , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Toxoplasma/química , Toxoplasma/genética , Toxoplasma/metabolismo , Técnicas do Sistema de Duplo-Híbrido
4.
bioRxiv ; 2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-37986837

RESUMO

The placenta is a critical barrier against viral, bacterial, and eukaryotic pathogens. For most teratogenic pathogens, the precise molecular mechanisms of placental resistance are still being unraveled. Given the importance to understand these mechanisms and challenges in replicating trophoblast- pathogen interactions using in vitro models, we tested an existing stem-cell derived model of trophoblast development for its relevance to infection with Toxoplasma gondii . We grew human trophoblast stem cells (TS CT ) under conditions leading to either syncytiotrophoblast (TS SYN ) or cytotrophoblast (TS CYT ) and infected them with T. gondii . We evaluated T. gondii proliferation and invasion, cell ultrastructure, as well as for transcriptome changes after infection. TS SYNs cells showed similar ultrastructure compared to primary cells and villous explants when analyzed by TEM and SEM, a resistance to T. gondii adhesion could be visualized on the SEM level. Furthermore, TS SYNs were highly refractory to parasite adhesion and replication, while TS CYT were not. RNA-seq data on mock-treated and infected cells identified differences between cell types as well as how they responded to T. gondii infection. We also evaluated if TS SC -derived SYNs and CYTs had distinct resistance profiles to another vertically transmitted facultative intracellular pathogen, Listeria monocytogenes . We demonstrate that TS SYNs are highly resistant to L. monocytogenes , while TS CYTs are not. Like T. gondii , TS SYN resistance to L. monocytogenes was at the level of bacterial adhesion. Altogether, our data indicate that stem-cell derived trophoblasts recapitulate resistance profiles of primary cells to T. gondii and highlight the critical importance of the placental surface in cell-autonomous resistance to teratogens.

5.
Nat Commun ; 14(1): 6078, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770433

RESUMO

Identification of regulators of Toxoplasma gondii bradyzoite development and cyst formation is the most direct way to address the importance of parasite development in long-term persistence and reactivation of this parasite. Here we show that a T. gondii gene (named Regulator of Cystogenesis 1; ROCY1) is sufficient for T. gondii bradyzoite formation in vitro and in vivo. ROCY1 encodes an RNA binding protein that has a preference for 3' regulatory regions of hundreds of T. gondii transcripts, and its RNA-binding domains are required to mediate bradyzoite development. Female mice infected with ΔROCY1 parasites have reduced (>90%) cyst burden. While viable parasites can be cultivated from brain tissue for up to 6 months post-infection, chronic brain-resident ΔROCY1 parasites have reduced oral infectivity compared to wild type. Despite clear defects in bradyzoite formation and oral infectivity, ΔROCY1 parasites were able to reactivate with similar timing and magnitude as wild type parasites for up to 5 months post-infection. Therefore while ROCY1 is a critical regulator of the bradyzoite developmental pathway, it is not required for parasite reactivation, raising new questions about the persisting life stage responsible for causing recrudescent disease.


Assuntos
Toxoplasma , Feminino , Animais , Camundongos , Toxoplasma/metabolismo , Redes Reguladoras de Genes , Recidiva Local de Neoplasia , Encéfalo/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo
6.
PLoS Negl Trop Dis ; 16(11): e0010833, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36441823

RESUMO

Tsetse flies (Glossina spp.) feed exclusively on vertebrate blood. After a blood meal, the enteric endosymbiont Sodalis glossinidius is exposed to various environmental stressors including high levels of heme. To investigate how S. glossinidius morsitans (Sgm), the Sodalis subspecies that resides within the gut of G. morsitans, tolerates the heme-induced oxidative environment of tsetse's midgut, we used RNAseq to identify bacterial genes that are differentially expressed in cells cultured in high versus lower heme environments. Our analysis identified 436 genes that were significantly differentially expressed (> or < 2-fold) in the presence of high heme [219 heme-induced genes (HIGs) and 217 heme-repressed genes (HRGs)]. HIGs were enriched in Gene Ontology (GO) terms related to regulation of a variety of biological functions, including gene expression and metabolic processes. We observed that 11 out of 13 Sgm genes that were heme regulated in vitro were similarly regulated in bacteria that resided within tsetse's midgut 24 hr (high heme environment) and 96 hr (low heme environment) after the flies had consumed a blood meal. We used intron mutagenesis to make insertion mutations in 12 Sgm HIGs and observed no significant change in growth in vitro in any of the mutant strains in high versus low heme conditions. However, Sgm strains that carried mutations in genes encoding a putative undefined phosphotransferase sugar (PTS) system component (SG2427), fucose transporter (SG0182), bacterioferritin (SG2280), and a DNA-binding protein (SGP1-0002), presented growth and/or survival defects in tsetse midguts as compared to normal Sgm. These findings suggest that the uptake up of sugars and storage of iron represent strategies that Sgm employs to successfully reside within the high heme environment of its tsetse host's midgut. Our results are of epidemiological relevance, as many hematophagous arthropods house gut-associated bacteria that mediate their host's competency as a vector of disease-causing pathogens.


Assuntos
Moscas Tsé-Tsé , Animais , Moscas Tsé-Tsé/genética , Heme
7.
mBio ; 12(6): e0159121, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34781732

RESUMO

Toxoplasma gondii is an intracellular protozoan pathogen of humans that can cross the placenta and result in adverse pregnancy outcomes and long-term birth defects. The mechanisms used by T. gondii to cross the placenta are unknown, but complex interactions with the host immune response are likely to play a role in dictating infection outcomes during pregnancy. Prior work showed that T. gondii infection dramatically and specifically increases the secretion of the immunomodulatory chemokine CCL22 in human placental cells during infection. Given the important role of this chemokine during pregnancy, we hypothesized that CCL22 induction was driven by a specific T. gondii-secreted effector. Using a combination of bioinformatics and molecular genetics, we have now identified T. gondii GRA28 as the gene product required for CCL22 induction. GRA28 is secreted into the host cell, where it localizes to the nucleus, and deletion of the GRA28 gene results in reduced CCL22 placental cells as well as a human monocyte cell line. The impact of GRA28 on CCL22 production is also conserved in mouse immune and placental cells both in vitro and in vivo. Moreover, parasites lacking GRA28 are impaired in their ability to disseminate throughout the animal, suggesting a link between CCL22 induction and the ability of the parasite to cause disease. Overall, these data demonstrate a clear function for GRA28 in altering the immunomodulatory landscape during infection of both placental and peripheral immune cells and show a clear impact of this immunomodulation on infection outcome. IMPORTANCE Toxoplasma gondii is a globally ubiquitous pathogen that can cause severe disease in HIV/AIDS patients and can also cross the placenta and infect the developing fetus. We have found that placental and immune cells infected with T. gondii secrete significant amounts of a chemokine (called CCL22) that is critical for immune tolerance during pregnancy. In order to better understand whether this is a response by the host or a process that is driven by the parasite, we have identified a T. gondii gene that is absolutely required to induce CCL22 production in human cells, indicating that CCL22 production is a process driven almost entirely by the parasite rather than the host. Consistent with its role in immune tolerance, we also found that T. gondii parasites lacking this gene are less able to proliferate and disseminate throughout the host. Taken together, these data illustrate a direct relationship between CCL22 levels in the infected host and a key parasite effector and provide an interesting example of how T. gondii can directly modulate host signaling pathways in order to facilitate its growth and dissemination.


Assuntos
Quimiocina CCL22/metabolismo , Placenta/parasitologia , Complicações Parasitárias na Gravidez/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo , Animais , Quimiocina CCL22/genética , Feminino , Interações Hospedeiro-Parasita , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Placenta/metabolismo , Gravidez , Complicações Parasitárias na Gravidez/genética , Complicações Parasitárias na Gravidez/parasitologia , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/genética , Toxoplasmose/parasitologia
8.
Microbiologyopen ; 10(1): e1158, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33650801

RESUMO

The microbiome of flowers (anthosphere) is an understudied compartment of the plant microbiome. Within the flower, petals represent a heterogeneous environment for microbes in terms of resources and environmental stress. Yet, little is known of drivers of structure and function of the epiphytic microbial community at the within-petal scale. We characterized the petal microbiome in two co-flowering plants that differ in the pattern of ultraviolet (UV) absorption along their petals. Bacterial communities were similar between plant hosts, with only rare phylogenetically distant species contributing to differences. The epiphyte community was highly culturable (75% of families) lending confidence in the spatially explicit isolation and characterization of bacteria. In one host, petals were heterogeneous in UV absorption along their length, and in these, there was a negative relationship between growth rate and position on the petal, as well as lower UV tolerance in strains isolated from the UV-absorbing base than from UV reflecting tip. A similar pattern was not seen in microbes isolated from a second host whose petals had uniform patterning along their length. Across strains, the variation in carbon usage and chemical tolerance followed common phylogenetic patterns. This work highlights the value of petals for spatially explicit explorations of bacteria of the anthosphere.


Assuntos
Bactérias/classificação , Bactérias/crescimento & desenvolvimento , Flores/microbiologia , Flores/ultraestrutura , Microbiota/genética , Bactérias/genética , Ecossistema , Helianthus/microbiologia , Microscopia Eletrônica de Varredura , Plantas , Tolerância a Radiação/fisiologia , Raios Ultravioleta , Verbesina/microbiologia
9.
PLoS Negl Trop Dis ; 13(11): e0007464, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31738754

RESUMO

Tsetse flies (Diptera: Glossinidae) house a taxonomically diverse microbiota that includes environmentally acquired bacteria, maternally transmitted symbiotic bacteria, and pathogenic African trypanosomes. Sodalis glossinidius, which is a facultative symbiont that resides intra and extracellularly within multiple tsetse tissues, has been implicated as a mediator of trypanosome infection establishment in the fly's gut. Tsetse's gut-associated population of Sodalis are subjected to marked temperature fluctuations each time their ectothermic fly host imbibes vertebrate blood. The molecular mechanisms that Sodalis employs to deal with this heat stress are unknown. In this study, we examined the thermal tolerance and heat shock response of Sodalis. When grown on BHI agar plates, the bacterium exhibited the most prolific growth at 25oC, and did not grow at temperatures above 30oC. Growth on BHI agar plates at 31°C was dependent on either the addition of blood to the agar or reduction in oxygen levels. Sodalis was viable in liquid cultures for 24 hours at 30oC, but began to die upon further exposure. The rate of death increased with increased temperature. Similarly, Sodalis was able to survive for 48 hours within tsetse flies housed at 30oC, while a higher temperature (37oC) was lethal. Sodalis' genome contains homologues of the heat shock chaperone protein-encoding genes dnaK, dnaJ, and grpE, and their expression was up-regulated in thermally stressed Sodalis, both in vitro and in vivo within tsetse fly midguts. Arrested growth of E. coli dnaK, dnaJ, or grpE mutants under thermal stress was reversed when the cells were transformed with a low copy plasmid that encoded the Sodalis homologues of these genes. The information contained in this study provides insight into how arthropod vector enteric commensals, many of which mediate their host's ability to transmit pathogens, mitigate heat shock associated with the ingestion of a blood meal.


Assuntos
Enterobacteriaceae/crescimento & desenvolvimento , Enterobacteriaceae/fisiologia , Estresse Fisiológico , Temperatura , Moscas Tsé-Tsé/microbiologia , Animais , Bactérias , Proteínas de Bactérias/genética , Técnicas de Cultura de Células , Enterobacteriaceae/genética , Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Cinética , Simbiose , Termotolerância , Trypanosoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...