Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(17): 4826-4841, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37344959

RESUMO

Climate change-triggered forest die-off is an increasing threat to global forests and carbon sequestration but remains extremely challenging to predict. Tree growth resilience metrics have been proposed as measurable proxies of tree susceptibility to mortality. However, it remains unclear whether tree growth resilience can improve predictions of stand-level mortality. Here, we use an extensive tree-ring dataset collected at ~3000 permanent forest inventory plots, spanning 13 dominant species across the US Mountain West, where forests have experienced strong drought and extensive die-off has been observed in the past two decades, to test the hypothesis that tree growth resilience to drought can explain and improve predictions of observed stand-level mortality. We found substantial increases in growth variability and temporal autocorrelation as well declining drought resistance and resilience for a number of species over the second half of the 20th century. Declining resilience and low tree growth were strongly associated with cross- and within-species patterns of mortality. Resilience metrics had similar explicative power compared to climate and stand structure, but the covariance structure among predictors implied that the effect of tree resilience on mortality could partially be explained by stand and climate variables. We conclude that tree growth resilience offers highly valuable insights on tree physiology by integrating the effect of stressors on forest mortality but may have only moderate potential to improve large-scale projections of forest die-off under climate change.


Assuntos
Florestas , Árvores , Secas , Resistência à Seca , Mudança Climática
2.
Ecol Lett ; 26(2): 257-267, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36453236

RESUMO

Forest productivity projections remain highly uncertain, notably because underpinning physiological controls are delicate to disentangle. Transient perturbation of global climate by large volcanic eruptions provides a unique opportunity to retrospectively isolate underlying processes. Here, we use a multi-proxy dataset of tree-ring records distributed over the Northern Hemisphere to investigate the effect of eruptions on tree growth and photosynthesis and evaluate CMIP6 models. Tree-ring isotope records denoted a widespread 2-4 years increase of photosynthesis following eruptions, likely as a result of diffuse light fertilization. We found evidence that enhanced photosynthesis transiently drove ring width, but the latter further exhibited a decadal anomaly that evidenced independent growth and photosynthesis responses. CMIP6 simulations reproduced overall tree growth decline but did not capture observed photosynthesis anomaly, its decoupling from tree growth or the climate sensitivities of either processes, highlighting key disconnects that deserve further attention to improve forest productivity projections under climate change.


Assuntos
Árvores , Erupções Vulcânicas , Estudos Retrospectivos , Florestas , Fotossíntese/fisiologia
3.
Science ; 376(6594): 758-761, 2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35549405

RESUMO

Uncertainties surrounding tree carbon allocation to growth are a major limitation to projections of forest carbon sequestration and response to climate change. The prevalence and extent to which carbon assimilation (source) or cambial activity (sink) mediate wood production are fundamentally important and remain elusive. We quantified source-sink relations across biomes by combining eddy-covariance gross primary production with extensive on-site and regional tree ring observations. We found widespread temporal decoupling between carbon assimilation and tree growth, underpinned by contrasting climatic sensitivities of these two processes. Substantial differences in assimilation-growth decoupling between angiosperms and gymnosperms were determined, as well as stronger decoupling with canopy closure, aridity, and decreasing temperatures. Our results reveal pervasive sink control over tree growth that is likely to be increasingly prominent under global climate change.


Assuntos
Sequestro de Carbono , Florestas , Árvores , Árvores/crescimento & desenvolvimento
5.
New Phytol ; 229(1): 213-229, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790914

RESUMO

A valid representation of intra-annual wood formation processes in global vegetation models is vital for assessing climate change impacts on the forest carbon stock. Yet, wood formation is generally modelled with photosynthesis, despite mounting evidence that cambial activity is rather directly constrained by limiting environmental factors. Here, we apply a state-of-the-art turgor-driven growth model to simulate 4 yr of hourly stem radial increment from Picea abies (L.) Karst. and Larix decidua Mill. growing along an elevational gradient. For the first time, wood formation observations were used to validate weekly to annual stem radial increment simulations, while environmental measurements were used to assess the climatic constraints on turgor-driven growth. Model simulations matched the observed timing and dynamics of wood formation. Using the detailed model outputs, we identified a strict environmental regulation on stem growth (air temperature > 2°C and soil water potential > -0.6 MPa). Warmer and drier summers reduced the growth rate as a result of turgor limitation despite warmer temperatures being favourable for cambial activity. These findings suggest that turgor is a central driver of the forest carbon sink and should be considered in next-generation vegetation models, particularly in the context of global warming and increasing frequency of droughts.


Assuntos
Picea , Pinus , Traqueófitas , Câmbio , Secas , Árvores , Madeira
6.
New Phytol ; 226(5): 1325-1340, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31998968

RESUMO

Efforts to develop mechanistic tree growth models are hindered by the uncertainty of whether and when tree growth responses to environmental factors are driven by carbon assimilation or by biophysical limitations of wood formation. In this study, we used multiannual weekly wood-formation monitoring of two conifer species (Larix decidua and Picea abies) along a 900 m elevational gradient in the Swiss Alps to assess the biophysical effect of temperature and water potential on wood formation. To this end, we developed a model that simulates the effect of water potential on turgor-driven cambial division, modulated by the effect of temperature on enzymatic activity. The model reproduced the observed phenology of tracheid production, as well as intra- and interannual tracheid production dynamics of both species along the elevational gradient, although interannual model performance was lower. We found that temperature alone explains the onset of tracheid production, yet water potential appears necessary to predict the ending and the total amount of tracheids produced annually. We conclude that intra-annual cambial activity is strongly constrained by both temperature and water potential at all elevations, independently of carbon assimilation. At the interannual scale, biophysical constraints likely interact with other factors.


Assuntos
Picea , Câmbio , Estações do Ano , Temperatura , Água
7.
New Phytol ; 225(1): 209-221, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31461530

RESUMO

The extent to which water availability can be used to predict the enlargement and final dimensions of xylem conduits remains an open issue. We reconstructed the time course of tracheid enlargement in Pinus sylvestris trees in central Spain by repeated measurements of tracheid diameter on microcores sampled weekly during a 2 yr period. We analyzed the role of water availability in these dynamics empirically through time-series correlation analysis and mechanistically by building a model that simulates daily tracheid enlargement rate and duration based on Lockhart's equation and water potential as the sole input. Tracheid enlargement followed a sigmoid-like time course, which varied intra- and interannually. Our empirical analysis showed that final tracheid diameter was strongly related to water availability during tracheid enlargement. The mechanistic model was calibrated and successfully validated (R2  = 0.92) against the observed tracheid enlargement time course. The model was also able to reproduce the seasonal variations of tracheid enlargement rate, duration and final diameter (R2  = 0.84-0.99). Our results support the hypothesis that tracheid enlargement and final dimensions can be modeled based on the direct effect of water potential on turgor-driven cell expansion. We argue that such a mechanism is consistent with other reported patterns of tracheid dimension variation.


Assuntos
Pinus sylvestris/fisiologia , Água/metabolismo , Xilema/fisiologia , Modelos Biológicos , Pinus/anatomia & histologia , Pinus sylvestris/anatomia & histologia , Estações do Ano , Espanha , Árvores , Xilema/anatomia & histologia
8.
Carbon Balance Manag ; 11(1): 15, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27525036

RESUMO

BACKGROUND: Managed forests are a major component of tropical landscapes. Production forests as designated by national forest services cover up to 400 million ha, i.e. half of the forested area in the humid tropics. Forest management thus plays a major role in the global carbon budget, but with a lack of unified method to estimate carbon fluxes from tropical managed forests. In this study we propose a new time- and spatially-explicit methodology to estimate the above-ground carbon budget of selective logging at regional scale. RESULTS: The yearly balance of a logging unit, i.e. the elementary management unit of a forest estate, is modelled by aggregating three sub-models encompassing (i) emissions from extracted wood, (ii) emissions from logging damage and deforested areas and (iii) carbon storage from post-logging recovery. Models are parametrised and uncertainties are propagated through a MCMC algorithm. As a case study, we used 38 years of National Forest Inventories in French Guiana, northeastern Amazonia, to estimate the above-ground carbon balance (i.e. the net carbon exchange with the atmosphere) of selectively logged forests. Over this period, the net carbon balance of selective logging in the French Guianan Permanent Forest Estate is estimated to be comprised between 0.12 and 1.33 Tg C, with a median value of 0.64 Tg C. Uncertainties over the model could be diminished by improving the accuracy of both logging damage and large woody necromass decay submodels. CONCLUSIONS: We propose an innovating carbon accounting framework relying upon basic logging statistics. This flexible tool allows carbon budget of tropical managed forests to be estimated in a wide range of tropical regions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...