Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 32(49): e2004573, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33095497

RESUMO

Advancement in microelectronics technology enables autonomous edge computing platforms in the size of a dust mote (<1 mm), bringing efficient and low-cost artificial intelligence close to the end user and Internet-of-Things (IoT) applications. The key challenge for these compact high-performance edge computers is the integration of a power source that satisfies the high-power-density requirement and does not increase the complexity and cost of the packaging. Here, it is shown that dust-sized III-V photovoltaic (PV) cells grown on Si and silicon-on-insulator (SOI) substrates can be integrated using a wafer-level-packaging process and achieve higher power density than all prior micro-PVs on Si and SOI substrates. The high-throughput heterogeneous integration unlocks the potential of large-scale manufacturing of these integrated systems with low cost for IoT applications. The negative effect of crystallographic defects in the heteroepitaxial materials on PV performance diminishes at high power density. Simultaneous power delivery and data transmission to the dust mote with heteroepitaxially grown PV are also demonstrated using hand-held illumination sources.

2.
Proc Natl Acad Sci U S A ; 106(27): 10907-11, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19549858

RESUMO

Phase-change materials are functionally important materials that can be thermally interconverted between metallic (crystalline) and semiconducting (amorphous) phases on a very short time scale. Although the interconversion appears to involve a change in local atomic coordination numbers, the electronic basis for this process is still unclear. Here, we demonstrate that in a nearly vacancy-free binary GeSb system where we can drive the phase change both thermally and, as we discover, by pressure, the transformation into the amorphous phase is electronic in origin. Correlations between conductivity, total system energy, and local atomic coordination revealed by experiments and long time ab initio simulations show that the structural reorganization into the amorphous state is driven by opening of an energy gap in the electronic density of states. The electronic driving force behind the phase change has the potential to change the interconversion paradigm in this material class.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...