Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Sci Eng C Mater Biol Appl ; 119: 111551, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33321615

RESUMO

Grape pomace (GP) is a major by-product from the wine industry, known for its bioactive compounds and their impact upon gastrointestinal (GI) health. However, bioaccessibility is often poor due to their degradation during digestion. This work aimed to encapsulate bioactive GP extract (GPE) into chitosan (CS) and alginate (Alg) nanoparticles (NPs) to mitigate degradation in the GI tract. Alg and CS NPs were optimized using a rotatable central composite design and NPs were characterized for their size, polydispersity, zeta potential and total phenolics (TP) association efficiency. The best formulations showed sizes ranging 523-853 nm, polydispersity indexes of 0.11-0.36, zeta potential of -15.0-14.9 mV and TP association efficiencies of 68 and 65%. FTIR confirmed that there was no formation of new chemical groups after association of the polymers with GPE. Both formulations improved the bioaccessibility of different phenolics following in vitro GI digestion, leading to increased antioxidant and antimicrobial activities. Moreover, the permeability of bioactive compounds through a Caco-2/HT29-MTX co-culture was reduced, suggesting a higher residence time in the intestine. Cy5.5 was used for tracking the CS NPs, which did not affect the metabolic activity of Caco-2 and HT29-MTX cells. Confocal microscopy images confirmed the adsorption of NPs to the cellular layer and suggested a reduction of the tight junction protein occludin when cells were incubated with Cy5.5-CS in solution. This study suggests that encapsulation of GPE can offer protection against along the GI tract and improve its biological activity with significant impact for oral delivery applications, including functional foods.


Assuntos
Quitosana , Nanopartículas , Vitis , Células CACO-2 , Portadores de Fármacos , Humanos , Extratos Vegetais
2.
Foods ; 9(10)2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036372

RESUMO

For many years, it was believed that only amino acids, dipeptides, and tripeptides could be absorbed and thus reach the bloodstream. Nowadays, the bioavailability of oligopeptides is also considered possible, leading to new research. This pilot study investigates the activity of brush border enzymes on undigested whey protein hydrolysate (WPH) and on simulated intestinal digested (ID) whey hydrolysate and the subsequent absorption of resultant peptides through the proximal jejunum of a 7-week old piglet setup in an Ussing chamber model. Amongst all samples taken, 884 oligopeptides were identified. The brush border peptidase activity was intense in the first 10 min of the experiment, producing several new peptides in the apical compartment. With respect to the ID substrate, 286 peptides were detected in the basolateral compartment after 120 min of enzyme activity, originating from ß-lactoglobulin (60%) and ß-casein (20%). Nevertheless, only 0.6 to 3.35% of any specific peptide could pass through the epithelial barrier and thus reach the basolateral compartment. This study demonstrates transepithelial jejunum absorption of whey oligopeptides in an ex vivo model. It also confirmed the proteolytic activity of brush border enzymes on these oligopeptides, giving birth to a myriad of new bioactive peptides available for absorption.

3.
Food Res Int ; 133: 109188, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32466916

RESUMO

Whey proteins present encrypted biofunctional peptides that need to be released from the native protein to exert their biological activity. Antihypertensive whey peptides are the most studied ones, which can be explained by high prevalence of this chronic degenerative disease. The present study investigated whether the molecular changes occurred during the gastrointestinal digestion of a whey protein hydrolysate could modulate its vasorelaxant potential in rat aortic rings. Spectrophotometric data and SDS-PAGE gel showed a small degree of hydrolysis during the gastric phase and intense intestinal proteolysis. RP-HPLC revealed the formation of a large peptide profile. During the simulated digestion, 198 peptides were generated and identified and, left-shifted the concentration-response curve of the endothelium-dependent vasorelaxation, as recorded for the digested hydrolysates. In conclusion, gastrointestinal digestion of the whey hydrolysate leads to the generation of bioactive peptides with enhanced vasodilatory potency, reinforcing the relevance of whey-derived products in blood pressure regulation.


Assuntos
Vasodilatação , Soro do Leite , Animais , Digestão , Endotélio , Ratos , Proteínas do Soro do Leite
4.
Food Res Int ; 132: 109060, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32331686

RESUMO

The objective of this study was to evaluate the microbiological, physicochemical and functional quality of an innovative goat whey orange juice beverage (GOB) processed by microfiltration. The microfiltration (0.2 µm) of the GOBs had a variation on the feed temperature (20, 30, 40, 50 °C) and were compared to the conventional heat treatment LTLT (63 °C/30 min). Microbiological (aerobic mesophilic bacteria, mold and yeast and lactic bacteria), physicochemical (pH, color, rheology and volatile compounds) bioactive compounds (acid ascorbic, total phenolics) and functional activity (DPPH, ACE, α-amilase and α-glucosidase) analysis were performed. The GOB processed by microfiltration using at least 30 °C presented adequate microbial counts (less than 4, 3 and 4 log CFU/mL, for AMB, molds and yeasts and LAB, respectively). In general, the pH, color parameters, volatile and bioactive compounds were not influenced by microfiltration temperature, but presented a difference from the LTLT processing. The rheological parameters were influenced by MF temperature and the utilization of temperatures of 20° and 30 °C maintained the consistency similar to the LTLT sample, preserving the compounds responsible for the texture. Therefore, it is suggested a processing of GOB by microfiltration using mild temperatures (between 30° and 40 °C) to preserve consistency and also obtain a desirable microbial quality, beyond the preservation of many functional properties and volatile compounds.


Assuntos
Citrus sinensis/química , Filtração/métodos , Manipulação de Alimentos/métodos , Sucos de Frutas e Vegetais/análise , Soro do Leite/química , Animais , Ácido Ascórbico/análise , Laticínios , Microbiologia de Alimentos , Sucos de Frutas e Vegetais/microbiologia , Cabras , Concentração de Íons de Hidrogênio , Viabilidade Microbiana , Fenóis/análise , Reologia , Temperatura , Soro do Leite/microbiologia
5.
Food Res Int ; 122: 123-128, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31229063

RESUMO

The aim of the present study concerns the development, characterization and sensory evaluation of a dual-functional whey hydrolysate. Four concentrations of commercial pepsin (0.48%, 0.95%, 1.43%, 1.91% w/w) were evaluated. The hydrolyses curves and the Reversed-Phase High Performance Liquid Chromatography analyses showed a direct relationship between enzyme concentration and degree of hydrolysis. Through mass spectrometry 21 peptides were identified and 5 of them have never been described in the literature before. The hydrolysate produced (PC3) induced a vascular relaxation of 65.02% in phenylephrine-contracted rat aortic rings. PC3 powder presented a homogeneous aspect with a mean particle size of 86.39 µm, high water solubility (>92%) in a wide pH range (1-12) and an increase of 33% in oil absorption capacity, when compared to the unhydrolyzed product. Sensory analysis showed a high acceptance (7.6 in a 9-point hedonic scale) of the hydrolysate among 100 consumers. The results brought the possibility of developing a whey hydrolysate with high vasorelaxant activity, great technological properties and sensory appeal, as an interesting dual-functional ingredient to be incorporated into food products.


Assuntos
Comportamento do Consumidor/estatística & dados numéricos , Hidrolisados de Proteína/química , Proteínas do Soro do Leite/química , Animais , Aorta/efeitos dos fármacos , Bovinos , Cromatografia de Fase Reversa , Manipulação de Alimentos , Humanos , Hidrólise , Espectrometria de Massas , Hidrolisados de Proteína/farmacologia , Ratos , Vasodilatadores/química , Vasodilatadores/farmacologia
6.
Food Funct ; 10(4): 1856-1869, 2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30950465

RESUMO

Grape pomace (GP) is a major byproduct worldwide, and it is well known for its bioactive compounds, such as fibers and phenolic compounds, that are popular for their impact upon human health, including gastrointestinal health. The objective of this work was to evaluate the chemical composition and biological activities of an enzymatic GP extract, as well as to investigate how gastrointestinal digestion (GID) modulates these properties. GP extract was previously produced using an enzymatic cocktail with xylanase activity and was then exposed to simulated conditions of GID, characterized for its chemical composition, and screened for antimicrobial, prebiotic, and antioxidant activities. The safety of this ingredient after GID was also assessed. GP extract presented high contents of dietary fiber and other carbohydrates, including xylooligosaccharides, in addition to minerals and phenolic compounds. In vitro simulated GID revealed that xylobiose was resistant to gastric conditions, unlike phenolic compounds. The use of 2% (w/v) of this ingredient proved to be a potential carbon source that could be fermented by Lactobacillus and Bifidobacterium spp, even after digestion. The extract also exhibited strong antioxidant and antimicrobial activities against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa; however, after GID, the antioxidant capacity decreased, and the antimicrobial capacity was strongly reduced or lost. Furthermore, the extract safety was also guaranteed on Caco-2 intestinal cells. This novel and green GP extract proved to be composed of relevant bioactive molecules, including xylooligosaccharides, polyphenols, organic acids, and minerals, which provided different biological properties; it has potential applications in the food industry such that it can be used as an ingredient in the development of new functional foods.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Vitis/química , Resíduos/análise , Antibacterianos/metabolismo , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Bifidobacterium/metabolismo , Células CACO-2 , Digestão , Escherichia coli/efeitos dos fármacos , Fermentação , Frutas/química , Frutas/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/metabolismo , Glucuronatos/química , Glucuronatos/metabolismo , Glucuronatos/farmacologia , Humanos , Lactobacillus/metabolismo , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia , Fenóis/química , Fenóis/metabolismo , Fenóis/farmacologia , Extratos Vegetais/metabolismo , Polifenóis/química , Polifenóis/metabolismo , Polifenóis/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Vitis/metabolismo
7.
J Food Sci Technol ; 56(2): 1066-1072, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30906064

RESUMO

The aim of this study was to evaluate the effects of process conditions on the solid-liquid extraction of bioactive compounds from the Alicante Bouschet grape skin from the semi-arid region of Brazil. The influence of temperature (23-57 °C), ethanol concentration (16-84%) and citric acid concentration (0-4%) on the total phenolic content, monomeric anthocyanin content and on the antioxidant capacity of the extracts measured by oxygen radical absorbance capacity and cation radical scavenging activity (ABTS·+) methods was investigated. Ethanol concentration and temperature had a significant influence on total phenolic compounds extraction and antioxidant capacity while monomeric anthocyanins extraction was only affected by ethanol concentration. The conditions selected as the most adequate for the extraction were: temperature of 40 °C, 50% v/v ethanol and 2% m/v citric acid.

8.
Carbohydr Polym ; 192: 327-336, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29691028

RESUMO

Cellulose nanocrystals (CNCs) were obtained from grape pomace through chemical and physical pretreatments. Bleached cellulose pulp was subjected to acid hydrolysis (AH) for 30 or 60 min and an ultrasound treatment to obtain CNCs (AH30S and AH60S). Compositional analyses of untreated (UGP) and pretreated (PGP) grape pomace showed the effectiveness of pretreatment in removing non-cellulosic components, recovering 80.1% cellulose in PGP (compared to 19.3% of UGP). Scanning and transmission electron microscopies were used to evaluate the CNCs morphology. AH in combination with ultrasound treatment led to needle-shaped structures and apparently more dispersed suspensions. Crystallinity index and thermal stability were studied by X-ray diffraction and thermogravimetric analysis, respectively. The AH60S sample presented high aspect ratio, crystallinity and thermal stability. CNCs toxicity was evaluated by exposing Caco-2 cells to CNCs suspension and evaluating their viability. Results showed that CNCs are non-toxic, opening the opportunity for their use on food and pharmaceutical applications.

9.
Molecules ; 23(3)2018 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-29518033

RESUMO

Cancer cells demand high ATP provisions to support proliferation, and targeting of energy metabolism is a good strategy to increase their sensitivity to treatments. In Brazil, wine manufacture is expanding, increasing the amount of pomace that is produced. We determined the phenolic composition and antioxidant properties of a dark skin Grape Pomace Extract and its effects on metabolism and redox state in human hepatocarcinoma HepG2 cells. The material and the methods used represented the industrial process since pomace derived from white wine production and the extract concentrated by pilot plant scale reverse osmosis. Grape pomace extract was rich in polyphenols, mainly anthocyanins, and presented high antioxidant capacity. Short-term metabolic effects, irrespective of any cytotoxicity, involved increased mitochondrial respiration and antioxidant capacity and decreased glycolytic metabolism. Long-term incubation was cytotoxic and cells died by necrosis and GPE was not toxic to non-cancer human fibroblasts. To the best of our knowledge, this is the first report to characterize pomace extract from white wine production from Brazilian winemaking regarding its effects on energy metabolism, suggesting its potential use for pharmaceutical and nutraceutical purposes.


Assuntos
Antocianinas/química , Antocianinas/farmacologia , Metabolismo Energético/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Vitis/química , Vinho/análise , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Células Hep G2 , Humanos , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Polifenóis/química , Polifenóis/farmacologia
10.
Carbohydr Polym ; 174: 1181-1191, 2017 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-28821043

RESUMO

Microcrystalline cellulose (MCC) can provide improved properties when the aim is the development of biodegradable packaging materials. In this work the physicochemical properties of polysaccharide-based films (chitosan and starch) with the incorporation of MCC and the application of moderate electric field (MEF) and ultrasonic bath (UB) as treatments, were evaluated. For each treatment, the thickness, moisture content, solubility, water vapor permeability, contact angle, mechanical properties, along with its color and opacity were determined. The surface morphologies of the films were assessed by scanning electron microscopy (SEM). X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy and thermogravimetric analysis (TGA) were also performed. It was observed that the addition of different concentrations of MCC as well as the application of MEF are responsible for changes in the properties of the films, being this effect dependent on the polysaccharide used. Chitosan-based films were slightly yellow, transparent and presented a more homogeneous structure. The use of MEF was efficient in decreasing the permeability to water vapor in chitosan based films without MCC, as well as in production of films with a more hydrophobic surface. The addition of MCC promoted more opaque, rigid, less flexible and less hydrophobic films. Starch-based films were whitish, with a more heterogeneous structure and the application of MEF generated more hydrophilic films with lower tensile strength and Young's modulus. The films with MCC were more opaque, less flexible and less hydrophilic than the films without MCC. The composites presented good thermal properties, which increases their applicability as packaging materials. Therefore, the incorporation of MCC into polysaccharide-based films as well as the application of MEF can be an approach to change the properties of films.

11.
Waste Manag ; 68: 581-594, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28734610

RESUMO

Grape is the main fruit crop in several countries. Although many grape-based food products can be found in the market, studies have shown that around 75% of the world grape production is destined for the wine industry. Grape pomace is an abundant by-product from the wine industry, which consists of the remaining skin, seeds and stalks and represents around 25% of total grape weight used in the winemaking process. In countries such as Italy, France and Spain, where wine production is more relevant, the annual grape pomace generation can reach nearly 1200 tonnes per year. In order to reach a sustainable winemaking process there is a need of a waste reduction policy. Several studies explore this subject using grape pomace as a source of healthy and technological compounds that could be applied in animal feed, pharmaceutical, cosmetic or food industry to improve stability and nutritional characteristics, and in cosmetic industry, where grape seeds oil is widely used. This review aims to approach the recent winemaking scenario and the benefits achieved when a waste management policy is implemented, as well as to compare available extractive technologies and a wide alternative of uses for grape pomace.


Assuntos
Reciclagem , Vitis , Vinho , Ração Animal , França , Itália , Eliminação de Resíduos , Espanha
12.
Food Chem ; 201: 145-52, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26868559

RESUMO

Brazilian grape pomace was extracted in hot water, and a factorial experiment was used to evaluate polysaccharide recovery. The dependent variables were the temperature, particle size and solute:solvent ratio. Polysaccharide yields varied from 3% to 10%, and the highest sugar content was observed when extraction was carried out at 100 °C from finely sized particles (⩽249 µm) in a 1:12 solute:solvent ratio. The monosaccharide composition of extracts obtained from flours were, on average, Rha:Ara:Xyl:Man:Gal:Glc:GalA in a 3:32:2:13:11:20:19 M ratio, with varying Glc:GalA ratios. (13)C NMR and HSQC spectra confirmed the presence of pectic- and glucose-based polysaccharides in the extracts. Phenolic compounds were found after pomace extraction, and catechin, gallic acid and epicatechin were the principal compounds identified. The extracts also had ABTS radical scavenging capacity (from 8.00 to 46.60 mMol Trolox/100 g pomace). These findings indicate that these grape pomace flours are rich in antioxidant dietary fibre and have a potential use as food ingredients.


Assuntos
Antioxidantes/química , Fibras na Dieta/análise , Vitis/química , Brasil , Fenóis/análise , Polissacarídeos
13.
Food Chem ; 198: 20-7, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26769500

RESUMO

The objective of this work was to obtain a protein hydrolysate from the wastewater generated during shrimp cooking, by coupling ultrafiltration and enzymatic hydrolysis processes. Initially, the effluent was concentrated by ultrafiltration, reaching a protein concentration factor of 3.2. The concentrated effluent was then enzymatically hydrolyzed, aiming at obtaining peptides with antioxidant capacity. The effects of some process variables--temperature (55-75 °C), pH (7-9) and enzyme/substrate (E/S) ratio (0.1-2.5%)--on the degree of hydrolysis and the antioxidant capacity were evaluated. The increase in temperature and pH resulted in lower degree of hydrolysis and higher antioxidant capacity. The conditions selected as the most suitable were: temperature of 75 °C, pH of 9.0 and E/S ratio of 0.1%. The hydrolysates produced at these conditions were also evaluated for total amino acid content and electrophoretic profile, showing a suitable amount of essential amino acids that covers the recommended daily needs.


Assuntos
Crustáceos/química , Peptídeos/química , Águas Residuárias/análise , Aminoácidos , Animais , Antioxidantes/química , Endopeptidases , Hidrólise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...