Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Immunol Cell Biol ; 102(3): 211-224, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38288547

RESUMO

CD4+ forkhead box P3 (FOXP3)+ regulatory T cells (Tregs) are essential in maintaining immune tolerance and suppressing excessive immune responses. Tregs also contribute to tissue repair processes distinct from their roles in immune suppression. For these reasons, Tregs are candidates for targeted therapies for inflammatory and autoimmune diseases, and in diseases where tissue damage occurs. MT-2 cells, an immortalized Treg-like cell line, offer a model to study Treg biology and their therapeutic potential. In the present study, we use clustered regularly interspaced palindromic repeats (CRISPR)-mediated knockdown of FOXP3 in MT-2 cells to understand the transcriptional and functional changes that occur when FOXP3 is lost and to compare MT-2 cells with primary human Tregs. We demonstrate that loss of FOXP3 affects the transcriptome of MT-2 cells and that FOXP3's potential downstream targets include a wide range of transcripts that participate in the cell cycle, promote growth and contribute to inflammatory processes, but do not wholly simulate previously reported human primary Treg transcriptional changes in the absence of FOXP3. We also demonstrate that FOXP3 regulates cell cycling and proliferation, expression of molecules crucial to Treg function and MT-2 cell-suppressive activities. Thus, MT-2 cells offer opportunities to address regulatory T-cell functions in vitro.


Assuntos
Terapia de Imunossupressão , Linfócitos T Reguladores , Humanos , Linhagem Celular , Tolerância Imunológica , Fatores de Transcrição Forkhead/metabolismo
2.
Cancer Discov ; 10(3): 460-475, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31810986

RESUMO

TANK binding kinase 1 (TBK1) is an important kinase involved in the innate immune response. Here we discover that TBK1 is hyperactivated by von Hippel-Lindau (VHL) loss or hypoxia in cancer cells. Tumors from patients with kidney cancer with VHL loss display elevated TBK1 phosphorylation. Loss of TBK1 via genetic ablation, pharmacologic inhibition, or a new cereblon-based proteolysis targeting chimera specifically inhibits VHL-deficient kidney cancer cell growth, while leaving VHL wild-type cells intact. TBK1 depletion also significantly blunts kidney tumorigenesis in an orthotopic xenograft model in vivo. Mechanistically, TBK1 hydroxylation on Proline 48 triggers VHL as well as the phosphatase PPM1B binding that leads to decreased TBK1 phosphorylation. We identify that TBK1 phosphorylates p62/SQSTM1 on Ser366, which is essential for p62 stability and kidney cancer cell proliferation. Our results establish that TBK1, distinct from its role in innate immune signaling, is a synthetic lethal target in cancer with VHL loss. SIGNIFICANCE: The mechanisms that lead to TBK1 activation in cancer and whether this activation is connected to its role in innate immunity remain unclear. Here, we discover that TBK1, distinct from its role in innate immunity, is activated by VHL loss or hypoxia in cancer.See related commentary by Bakouny and Barbie, p. 348.This article is highlighted in the In This Issue feature, p. 327.


Assuntos
Carcinoma de Células Renais/genética , Neoplasias Renais/genética , Proteínas Serina-Treonina Quinases/genética , Proteína Sequestossoma-1/genética , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imunidade Inata/genética , Neoplasias Renais/imunologia , Neoplasias Renais/patologia , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA