Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Enzyme Inhib Med Chem ; 38(1): 2231169, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37401012

RESUMO

Trypanosoma cruzi is the causative agent of American trypanosomiasis, which mainly affects populations in Latin America. Benznidazole is used to control the disease, with severe effects in patients receiving this chemotherapy. Previous studies have demonstrated the inhibition of triosephosphate isomerase from T. cruzi, but cellular enzyme inhibition has yet to be established. This study demonstrates that rabeprazole inhibits both cell viability and triosephosphate isomerase activity in T. cruzi epimastigotes. Our results show that rabeprazole has an IC50 of 0.4 µM, which is 14.5 times more effective than benznidazole. Additionally, we observed increased levels of methyl-glyoxal and advanced glycation end products after the inhibition of cellular triosephosphate isomerase by rabeprazole. Finally, we demonstrate that the inactivation mechanisms of rabeprazole on triosephosphate isomerase of T. cruzi can be achieved through the derivatization of three of its four cysteine residues. These results indicate that rabeprazole is a promising candidate against American trypanosomiasis.


Assuntos
Doença de Chagas , Tripanossomicidas , Trypanosoma cruzi , Humanos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/farmacologia , Rabeprazol/farmacologia , Rabeprazol/uso terapêutico , Reposicionamento de Medicamentos , Doença de Chagas/tratamento farmacológico , Tripanossomicidas/farmacologia
2.
Molecules ; 27(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36557996

RESUMO

Rhipicephalus microplus, the "common cattle tick", is the most important ectoparasite in livestock worldwide due to the economic and health losses it produces. This tick is a vector for pathogens of several tick-borne diseases. In Latin American countries, damages reach approximately USD 500 million annually due to tick infections, as well as tick-borne diseases. Currently, resistant populations for every chemical group of acaricides have been reported, posing a serious problem for tick control. This study aims to find new alternatives for controlling resistant ticks with compounds derived from small synthetic organic molecules and natural origins. Using BME26 embryonic cells, we performed phenotypic screening of 44 natural extracts from 10 Mexican plants used in traditional medicine, and 33 compounds selected from our chemical collection. We found 10 extracts and 13 compounds that inhibited cell growth by 50% at 50 µg/mL and 100 µM, respectively; the dose-response profile of two of them was characterized, and these compounds were assayed in vitro against different life stages of Rhipicephalus microplus. We also performed a target-directed screening of the activity of triosephosphate isomerase, using 86 compounds selected from our chemical collection. In this collection, we found the most potent and selective inhibitor of tick triosephosphate isomerase reported until now. Two other compounds had a potent acaricidal effect in vitro using adults and larvae when compared with other acaricides such as ivermectin and Amitraz. Those compounds were also selective to the ticks compared with the cytotoxicity in mammalian cells like macrophages or bovine spermatozoids. They also had a good toxicological profile, resulting in promising acaricidal compounds for tick control in cattle raising.


Assuntos
Acaricidas , Doenças dos Bovinos , Rhipicephalus , Doenças Transmitidas por Carrapatos , Animais , Bovinos , Acaricidas/farmacologia , Triose-Fosfato Isomerase , Extratos Vegetais/química , Doenças dos Bovinos/parasitologia , Larva , Mamíferos
3.
Appl Microbiol Biotechnol ; 106(4): 1475-1492, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35092453

RESUMO

The protease catalytic subunit of the nuclear inclusion protein A from tobacco etch virus (TEVp) is widely used to remove tags and fusion proteins from recombinant proteins. Some intrinsic drawbacks to its recombinant production have been studied for many years, such as low solubility, auto-proteolysis, and instability. Some point mutations have been incorporated in the amino acid protease sequence to improve its production. Here, a comprehensive review of each mutation reported so far has been made to incorporate them into a mutant called TEVp7M with a total of seven changes. This mutant with a His7tag at N-terminus was produced with remarkable purification yields (55 mg/L of culture) from the soluble fraction in a single step affinity purification. The stability of His7-TEVp7M was analyzed and compared with the single mutant TEVp S219V, making evident that His7-TEVp7M shows very constant thermal stability against pH variation, whereas TEVp S219V is highly sensitive to this change. The cleavage reaction was optimized by determining the amount of protease that could cleave a 100-fold excess substrate in the shortest possible time at 30 °C. Under these conditions, His7-TEVp7M was able to cleave His-tag in the buffers commonly used for affinity purification. Finally, a structural analysis of the mutations showed that four of them increased the polarity of the residues involved and, consequently, showed increased solubility of TEVp and fewer hydrophobic regions exposed to the solvent. Taken together, the seven changes studied in this work improved stability, solubility, and activity of TEVp producing enough protease to digest large amounts of tags or fusion proteins. KEY POINTS: • Production of excellent yields of a TEVp (TEVp7M) by incorporation of seven changes. • His-tag removal in an excess substrate in the common buffers used for purification. • Incorporated mutations improve polarity, stability, and activity of TEVp7M.


Assuntos
Endopeptidases , Cromatografia de Afinidade , Endopeptidases/genética , Endopeptidases/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/metabolismo
4.
Front Cell Infect Microbiol ; 11: 641356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33937094

RESUMO

Protein phosphorylation and dephosphorylation are increasingly recognized as important processes for regulating multiple physiological mechanisms. Phosphorylation is carried out by protein kinases and dephosphorylation by protein phosphatases. Phosphoprotein phosphatases (PPPs), one of three families of protein serine/threonine phosphatases, have great structural diversity and are involved in regulating many cell functions. PP2C, a type of PPP, is found in Leishmania, a dimorphic protozoan parasite and the causal agent of leishmaniasis. The aim of this study was to clone, purify, biochemically characterize and quantify the expression of PP2C in Leishmania mexicana (LmxPP2C). Recombinant LmxPP2C dephosphorylated a specific threonine (with optimal activity at pH 8) in the presence of the manganese divalent cation (Mn+2). LmxPP2C activity was inhibited by sanguinarine (a specific inhibitor) but was unaffected by protein tyrosine phosphatase inhibitors. Western blot analysis indicated that anti-LmxPP2C antibodies recognized a molecule of 45.2 kDa. Transmission electron microscopy with immunodetection localized LmxPP2C in the flagellar pocket and flagellum of promastigotes but showed poor staining in amastigotes. Interestingly, LmxPP2C belongs to the ortholog group OG6_142542, which contains only protozoa of the family Trypanosomatidae. This suggests a specific function of the enzyme in the flagellar pocket of these microorganisms.


Assuntos
Leishmania mexicana , Leishmania , Leishmaniose , Humanos , Leishmania/metabolismo , Leishmania mexicana/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Serina
5.
Future Med Chem ; 13(8): 701-714, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33648346

RESUMO

Aim: We report the synthesis and biological evaluation of a small library of 15 functionalized 3-styryl-2-pyrazolines and pyrazoles, derived from curcuminoids, as trypanosomicidal agents. Methods & results: The compounds were prepared via a cyclization reaction between the corresponding curcuminoids and the appropriate hydrazines. All of the derivatives synthesized were investigated for their trypanosomicidal activities. Compounds 4a and 4e showed significant activity against epimastigotes of Trypanosoma cruzi, with IC50 values of 5.0 and 4.2 µM, respectively, accompanied by no toxicity to noncancerous mammalian cells. Compound 6b was found to effectively inhibit T. cruzi triosephosphate isomerase. Conclusion: The up to 16-fold higher potency of these derivatives compared with their curcuminoid precursors makes them a promising new family of T. cruzi inhibitors.


Assuntos
Doença de Chagas/tratamento farmacológico , Curcumina/química , Inibidores Enzimáticos/síntese química , Pirazóis/síntese química , Triose-Fosfato Isomerase/antagonistas & inibidores , Tripanossomicidas/síntese química , Trypanosoma cruzi/efeitos dos fármacos , Animais , Ciclização , Diarileptanoides/química , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Humanos , Hidrazinas/química , Macrófagos/citologia , Camundongos , Simulação de Acoplamento Molecular , Testes de Sensibilidade Parasitária , Ligação Proteica , Pirazóis/farmacologia , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia
6.
Biomolecules ; 10(7)2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32679775

RESUMO

Therapeutic strategies for the treatment of any severe disease are based on the discovery and validation of druggable targets. The human genome encodes only 600-1500 targets for small-molecule drugs, but posttranslational modifications lead to a considerably larger druggable proteome. The spontaneous conversion of asparagine (Asn) residues to aspartic acid or isoaspartic acid is a frequent modification in proteins as part of the process called deamidation. Triosephosphate isomerase (TIM) is a glycolytic enzyme whose deamidation has been thoroughly studied, but the prospects of exploiting this phenomenon for drug design remain poorly understood. The purpose of this study is to demonstrate the properties of deamidated human TIM (HsTIM) as a selective molecular target. Using in silico prediction, in vitro analyses, and a bacterial model lacking the tim gene, this study analyzed the structural and functional differences between deamidated and nondeamidated HsTIM, which account for the efficacy of this protein as a druggable target. The highly increased permeability and loss of noncovalent interactions of deamidated TIM were found to play a central role in the process of selective enzyme inactivation and methylglyoxal production. This study elucidates the properties of deamidated HsTIM regarding its selective inhibition by thiol-reactive drugs and how these drugs can contribute to the development of cell-specific therapeutic strategies for a variety of diseases, such as COVID-19 and cancer.


Assuntos
Infecções por Coronavirus/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias/tratamento farmacológico , Pneumonia Viral/tratamento farmacológico , Bibliotecas de Moléculas Pequenas/farmacologia , Triose-Fosfato Isomerase/antagonistas & inibidores , Amidas/antagonistas & inibidores , Amidas/metabolismo , COVID-19 , Cristalografia por Raios X , Inibidores Enzimáticos/química , Humanos , Modelos Moleculares , Mutação , Pandemias , Proteoma/antagonistas & inibidores , Proteoma/genética , Proteoma/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas/química , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/metabolismo
7.
Vet Sci ; 5(3)2018 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-30142944

RESUMO

The cattle tick Rhipicephalus microplus is one of the most important ectoparasites causing significant economic losses for the cattle industry. The major tool of control is reducing the number of ticks, applying acaricides in cattle. However, overuse has led to selection of resistant populations of R. microplus to most of these products, some even to more than one active principle. Thus, exploration for new molecules with acaricidal activity in R. microplus has become necessary. Triosephosphate isomerase (TIM) is an essential enzyme in R. microplus metabolism and could be an interesting target for the development of new methods for tick control. In this work, we screened 227 compounds, from our in-house chemo-library, against TIM from R. microplus. Four compounds (50, 98, 14, and 161) selectively inhibited this enzyme with IC50 values between 25 and 50 µM. They were also able to diminish cellular viability of BME26 embryonic cells by more than 50% at 50 µM. A molecular docking study showed that the compounds bind in different regions of the protein; compound 14 interacts with the dimer interface. Furthermore, compound 14 affected the survival of partially engorged females, fed artificially, using the capillary technique. This molecule is simple, easy to produce, and important biological data-including toxicological information-are available for it. Our results imply a promising role for compound 14 as a prototype for development of a new acaricidal involving selective TIM inhibition.

8.
Biochem Biophys Res Commun ; 503(4): 3017-3022, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30143261

RESUMO

Kinetic stability of proteins determines their susceptibility to irreversibly unfold in a time-dependent process, and therefore its half-life. A residue displacement analysis of temperature-induced unfolding molecular dynamics simulations was recently employed to define the thermal flexibility of proteins. This property was found to be correlated with the activation energy barrier (Eact) separating the native from the transition state in the denaturation process. The Eact was determined from the application of a two-state irreversible model to temperature unfolding experiments using differential scanning calorimetry (DSC). The contribution of each residue to the thermal flexibility of proteins is used here to propose multiple mutations in triosephosphate isomerase (TIM) from Trypanosoma brucei (TbTIM) and Trypanosoma cruzi (TcTIM), two parasites closely related by evolution. These two enzymes, taken as model systems, have practically identical structure but large differences in their kinetic stability. We constructed two functional TIM variants with more than twice and less than half the activation energy of their respective wild-type reference structures. The results show that the proposed strategy is able to identify the crucial residues for the kinetic stability in these enzymes. As it occurs with other protein properties reflecting their complex behavior, kinetic stability appears to be the consequence of an extensive network of inter-residue interactions, acting in a concerted manner. The proposed strategy to design variants can be used with other proteins, to increase or decrease their functional half-life.


Assuntos
Engenharia de Proteínas/métodos , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Estabilidade Enzimática , Cinética , Modelos Moleculares , Mutação , Desnaturação Proteica , Desdobramento de Proteína , Temperatura , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
9.
Biochim Biophys Acta Gen Subj ; 1862(6): 1401-1409, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29571745

RESUMO

Human triosephosphate isomerase (TIM) deficiency is a very rare disease, but there are several mutations reported to be causing the illness. In this work, we produced nine recombinant human triosephosphate isomerases which have the mutations reported to produce TIM deficiency. These enzymes were characterized biophysically and biochemically to determine their kinetic and stability parameters, and also to substitute TIM activity in supporting the growth of an Escherichia coli strain lacking the tim gene. Our results allowed us to rate the deleteriousness of the human TIM mutants based on the type and severity of the alterations observed, to classify four "unknown severity mutants" with altered residues in positions 62, 72, 122 and 154 and to explain in structural terms the mutation V231M, the most affected mutant from the kinetic point of view and the only homozygous mutation reported besides E104D.


Assuntos
Anemia Hemolítica Congênita não Esferocítica/enzimologia , Erros Inatos do Metabolismo dos Carboidratos/enzimologia , Mutação , Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/deficiência , Triose-Fosfato Isomerase/metabolismo , Anemia Hemolítica Congênita não Esferocítica/genética , Erros Inatos do Metabolismo dos Carboidratos/genética , Estabilidade Enzimática , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Triose-Fosfato Isomerase/genética
10.
PLoS One ; 13(1): e0189525, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342154

RESUMO

Proteins with great sequence similarity usually have similar structure, function and other physicochemical properties. But in many cases, one or more of the physicochemical or functional characteristics differ, sometimes very considerably, among these homologous proteins. To better understand how critical amino acids determine quantitative properties of function in proteins, the responsible residues must be located and identified. This can be difficult to achieve, particularly in cases where multiple amino acids are involved. In this work, two triosephosphate isomerases with very high similarity from two related human parasites were used to address one such problem. We demonstrate that a seventy-fold difference in the reactivity of an interface cysteine to the sulfhydryl reagent methylmethane sulfonate in these two enzymes depends on three amino acids located far away from this critical residue and which could not have been predicted using other current methods. Starting from previous observations with chimeric proteins involving these two triosephosphate isomerases, we developed a strategy involving additive mutant enzymes and selected site directed mutants to locate and identify the three amino acids. These three residues seem to induce changes in the interface cysteine in reactivity by increasing (or decreasing) its apparent pKa. Some enzymes with four to seven mutations also exhibited altered reactivity. This study completes a strategy for identifying key residues in the sequences of proteins that can have applications in future protein structure-function studies.


Assuntos
Aminoácidos/química , Cisteína/química , Reagentes de Sulfidrila/química , Triose-Fosfato Isomerase/química , Trypanosoma/enzimologia , Sequência de Aminoácidos , Aminoácidos/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Homologia de Sequência de Aminoácidos , Triose-Fosfato Isomerase/genética
11.
Molecules ; 22(5)2017 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28481276

RESUMO

A series of fifty arylideneketones and thiazolidenehydrazines was evaluated against Leishmania infantum and Leishmania braziliensis. Furthermore, new simplified thiazolidenehydrazine derivatives were evaluated against Trypanosoma cruzi. The cytotoxicity of the active compounds on non-infected fibroblasts or macrophages was established in vitro to evaluate the selectivity of their anti-parasitic effects. Seven thiazolidenehydrazine derivatives and ten arylideneketones had good activity against the three parasites. The IC50 values for T. cruzi and Leishmania spp. ranged from 90 nM-25 µM. Eight compounds had multi-trypanocidal activity against T. cruzi and Leishmania spp. (the etiological agents of cutaneous and visceral forms). The selectivity of these active compounds was better than the three reference drugs: benznidazole, glucantime and miltefosine. They also had low toxicity when tested in vivo on zebrafish. Trying to understand the mechanism of action of these compounds, two possible molecular targets were investigated: triosephosphate isomerase and cruzipain. We also used a molecular stripping approach to elucidate the minimal structural requirements for their anti-T. cruzi activity.


Assuntos
Doença de Chagas/tratamento farmacológico , Leishmania braziliensis/crescimento & desenvolvimento , Leishmania infantum/crescimento & desenvolvimento , Leishmaniose Cutânea/tratamento farmacológico , Leishmaniose Visceral/dietoterapia , Tripanossomicidas , Trypanosoma cruzi/crescimento & desenvolvimento , Animais , Linhagem Celular , Doença de Chagas/metabolismo , Doença de Chagas/patologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Humanos , Hidrazinas , Cetonas , Leishmaniose Cutânea/metabolismo , Leishmaniose Cutânea/patologia , Leishmaniose Visceral/metabolismo , Leishmaniose Visceral/patologia , Camundongos , Tiazolidinas , Tripanossomicidas/síntese química , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Peixe-Zebra
12.
Proteins ; 85(7): 1190-1211, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28378917

RESUMO

Triosephosphate isomerase (TIM) is a ubiquitous enzyme, which appeared early in evolution. TIM is responsible for obtaining net ATP from glycolysis and producing an extra pyruvate molecule for each glucose molecule, under aerobic and anaerobic conditions. It is placed in a metabolic crossroad that allows a quick balance of the triose phosphate aldolase produced by glycolysis, and is also linked to lipid metabolism through the alternation of glycerol-3-phosphate and the pentose cycle. TIM is one of the most studied enzymes with more than 199 structures deposited in the PDB. The interest for this enzyme stems from the fact that it is involved in glycolysis, but also in aging, human diseases and metabolism. TIM has been a target in the search for chemical compounds against infectious diseases and is a model to study catalytic features. Until February 2017, 62% of all residues of the protein have been studied by mutagenesis and/or using other approaches. Here, we present a detailed and comprehensive recompilation of the reported effects on TIM catalysis, stability, druggability and human disease produced by each of the amino acids studied, contributing to a better understanding of the properties of this fundamental protein. The information reviewed here shows that the role of the noncatalytic residues depend on their molecular context, the delicate balance between the short and long-range interactions in concerted action determining the properties of the protein. Each protein should be regarded as a unique entity that has evolved to be functional in the organism to which it belongs. Proteins 2017; 85:1190-1211. © 2017 Wiley Periodicals, Inc.


Assuntos
Inibidores Enzimáticos/química , Triose-Fosfato Isomerase/química , Sequência de Aminoácidos , Biocatálise , Domínio Catalítico , Estabilidade Enzimática , Humanos , Cinética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Especificidade por Substrato , Triose-Fosfato Isomerase/antagonistas & inibidores , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo
13.
Biotechnol Rep (Amst) ; 13: 42-48, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28352562

RESUMO

Rare arginine codons AGA and AGG affect the heterologous expression of proteins in Eschericha coli. The tRNAs necessary for protein synthesis are scarce in E. coli strain BL21(DE3) pLysS and plentiful in strain BL21(DE3) CodonPlus -RIL. We evaluated in both bacterial strains the effect of these rare codons on the expression of triosephosphate isomerases from 7 different species, whose sequences had different dispositions of rare arginine codons. The ratio of expressed protein (CP/Bl21) correlated with the number of rare codons. Our study shows that the number, position and particularities of the combination of rare Arg codons in the natural non-optimized sequences of the triosephosphate isomerases influence the synthesis of heterologous proteins in E. coli and could have implications in the selection of better sequences for engineering enzymes for novel or manipulated metabolic pathways or for the expression levels of non enzymatic proteins..

14.
Structure ; 25(1): 167-179, 2017 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28052236

RESUMO

Kinetic stability is a key parameter to comprehend protein behavior and it plays a central role to understand how evolution has reached the balance between function and stability in cell-relevant timescales. Using an approach that includes simulations, protein engineering, and calorimetry, we show that there is a clear correlation between kinetic stability determined by differential scanning calorimetry and protein thermal flexibility obtained from a novel method based on temperature-induced unfolding molecular dynamics simulations. Thermal flexibility quantitatively measures the increment of the conformational space available to the protein when energy in provided. The (ß/α)8 barrel fold of two closely related by evolution triosephosphate isomerases from two trypanosomes are used as model systems. The kinetic stability-thermal flexibility correlation has predictive power for the studied proteins, suggesting that the strategy and methodology discussed here might be applied to other proteins in biotechnological developments, evolutionary studies, and the design of protein based therapeutics.


Assuntos
Triose-Fosfato Isomerase/química , Trypanosoma/enzimologia , Varredura Diferencial de Calorimetria , Cinética , Conformação Molecular , Desnaturação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Estrutura Secundária de Proteína , Desdobramento de Proteína , Termodinâmica , Trypanosoma/química
15.
Proteins ; 85(4): 571-579, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28002620

RESUMO

The effect of specific residues on the kinetic stability of two closely related triosephosphate isomerases (from Trypanosoma cruzi, TcTIM and Trypanosoma brucei, TbTIM) has been studied. Based on a comparison of their ß-turn occurrence, we engineered two chimerical enzymes where their super secondary ß-loop-α motifs 2 ((ßα)2 ) were swapped. Differential scanning calorimetry (DSC) experiments showed that the (ßα)2 motif of TcTIM inserted into TbTIM (2Tc) increases the kinetic stability. On the other hand, the presence of the (ßα)2 motif of TbTIM inserted into TcTIM (2Tb) gave a chimerical protein difficult to purify in soluble form and with a significantly reduced kinetic stability. The comparison of the contact maps of the (ßα)2 of TbTIM and TcTIM showed differences in the contact pattern of residues 43 and 49. In TcTIM these residues are prolines, located at the N-terminal of loop-2 and the C-terminal of α-helix-2. Twelve mutants were engineered involving residues 43 and 49 to study the effect over the unfolding activation energy barrier (EA ). A systematic analysis of DSC data showed a large decrease on the EA of TcTIM (ΔEA ranging from 468 to 678 kJ/mol) when the single and double proline mutations are present. The relevance of Pro43 to the kinetic stability is also revealed by mutation S43P, which increased the free energy of the transition state of TbTIM by 17.7 kJ/mol. Overall, the results indicate that protein kinetic stability can be severely affected by punctual mutations, disturbing the complex network of interactions that, in concerted action, determine protein stability. Proteins 2017; 85:571-579. © 2016 Wiley Periodicals, Inc.


Assuntos
Prolina/química , Proteínas de Protozoários/química , Triose-Fosfato Isomerase/química , Trypanosoma brucei brucei/química , Trypanosoma cruzi/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Gliceraldeído 3-Fosfato/química , Gliceraldeído 3-Fosfato/metabolismo , Cinética , Modelos Moleculares , Mutação , Prolina/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Engenharia de Proteínas , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato , Termodinâmica , Triose-Fosfato Isomerase/genética , Triose-Fosfato Isomerase/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/enzimologia , Trypanosoma cruzi/genética
17.
Open Biol ; 6(10)2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27733588

RESUMO

The reactivation of triosephosphate isomerase (TIM) from unfolded monomers induced by guanidine hydrochloride involves different amino acids of its sequence in different stages of protein refolding. We describe a systematic mutagenesis method to find critical residues for certain physico-chemical properties of a protein. The two similar TIMs of Trypanosoma brucei and Trypanosoma cruzi have different reactivation velocities and efficiencies. We used a small number of chimeric enzymes, additive mutants and planned site-directed mutants to produce an enzyme from T. brucei with 13 mutations in its sequence, which reactivates fast and efficiently like wild-type (WT) TIM from T. cruzi, and another enzyme from T. cruzi, with 13 slightly altered mutations, which reactivated slowly and inefficiently like the WT TIM of T. brucei Our method is a shorter alternative to random mutagenesis, saturation mutagenesis or directed evolution to find multiple amino acids critical for certain properties of proteins.


Assuntos
Triose-Fosfato Isomerase/química , Triose-Fosfato Isomerase/genética , Trypanosoma brucei brucei/enzimologia , Trypanosoma cruzi/enzimologia , Motivos de Aminoácidos , Dicroísmo Circular , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/química , Trypanosoma brucei brucei/genética , Trypanosoma cruzi/química , Trypanosoma cruzi/genética
18.
Chem Biol Interact ; 249: 10-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26902637

RESUMO

The receptor for advanced glycation end products (RAGE) is commonly involved in different neurodegenerative and inflammatory disorders. The cellular signaling associated to RAGE activation may occur upon binding to different ligands. In this study we investigated whether the toxic model produced by 6-hydroxydopamine (6-OHDA) in rats comprises early noxious responses related to RAGE-mediated signaling cascades. In order to explore a possible interaction between 6-OHDA and RAGE, affinity parameters of RAGE with 6-OHDA were estimated by different means. The possible binding sites of 6-OHDA with the VC1 homodimer for both rat and human RAGE were also modeled. Our results show that the striatal infusion of 6-OHDA recruits RAGE upregulation, as evidenced by an early expression of the receptor. 6-OHDA was also found to bind the VC1 homodimer, although its affinity was moderate when compared to other ligands. This work contributes to the understanding of the role of RAGE activation for 6-OHDA-induced neurotoxicity.


Assuntos
Corpo Estriado/metabolismo , Oxidopamina/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Animais , Sítios de Ligação/fisiologia , Ligantes , Masculino , Ligação Proteica/fisiologia , Ratos , Ratos Wistar
19.
ChemMedChem ; 11(12): 1328-38, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-26492824

RESUMO

Triosephosphate isomerase (TIM) is an essential Trypanosoma cruzi enzyme and one of the few validated drug targets for Chagas disease. The known inhibitors of this enzyme behave poorly or have low activity in the parasite. In this work, we used symmetrical diarylideneketones derived from structures with trypanosomicidal activity. We obtained an enzymatic inhibitor with an IC50 value of 86 nm without inhibition effects on the mammalian enzyme. These molecules also affected cruzipain, another essential proteolytic enzyme of the parasite. This dual activity is important to avoid resistance problems. The compounds were studied in vitro against the epimastigote form of the parasite, and nonspecific toxicity to mammalian cells was also evaluated. As a proof of concept, three of the best derivatives were also assayed in vivo. Some of these derivatives showed higher in vitro trypanosomicidal activity than the reference drugs and were effective in protecting infected mice. In addition, these molecules could be obtained by a simple and economic green synthetic route, which is an important feature in the research and development of future drugs for neglected diseases.


Assuntos
Antiprotozoários/farmacologia , Cisteína Endopeptidases/metabolismo , Inibidores Enzimáticos/farmacologia , Proteínas de Protozoários/antagonistas & inibidores , Triose-Fosfato Isomerase/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Animais , Antiprotozoários/química , Antiprotozoários/uso terapêutico , Sítios de Ligação , Doença de Chagas/tratamento farmacológico , Cisteína Endopeptidases/química , Modelos Animais de Doenças , Inibidores Enzimáticos/química , Inibidores Enzimáticos/uso terapêutico , Cetonas/química , Cetonas/farmacologia , Cetonas/uso terapêutico , Camundongos , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade , Triose-Fosfato Isomerase/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento
20.
Molecules ; 20(8): 14595-610, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26274947

RESUMO

The current pharmacological Chagas disease treatments, using Nifurtimox or Benznidazole, show limited therapeutic results and are associated with potential side effects, like mutagenicity. Using random screening we have identified new chemotypes that were able to inhibit relevant targets of the Trypanosoma cruzi. We found 3H-[1,2]dithioles with the ability to inhibit Trypanosoma cruzi triosephosphate isomerase (TcTIM). Herein, we studied the structural modifications of this chemotype to analyze the influence of volume, lipophilicity and electronic properties in the anti-T. cruzi activity. Their selectivity to parasites vs. mammalian cells was also examined. To get insights into a possible mechanism of action, the inhibition of the enzymatic activity of TcTIM and cruzipain, using the isolated enzymes, and the inhibition of membrane sterol biosynthesis and excreted metabolites, using the whole parasite, were achieved. We found that this structural framework is interesting for the generation of innovative drugs for the treatment of Chagas disease.


Assuntos
Tolueno/análogos & derivados , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Macrófagos/efeitos dos fármacos , Camundongos , Esteróis/antagonistas & inibidores , Esteróis/biossíntese , Tolueno/síntese química , Tolueno/química , Tolueno/farmacologia , Tripanossomicidas/síntese química , Trypanosoma cruzi/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...