RESUMO
Biopolymer-based films are a promising alternative for the food packaging industry, in which petrochemical-based polymers like low-density polyethylene (LDPE) are commanding attention because of their high pollution levels. In this research, a biopolymer-based film made of chitosan (CS), gelatin (GEL), and glycerol (GLY) was designed. A Response Surface Methodology (RSM) analysis was performed to determine the chitosan, gelatin, and glycerol content that improved the mechanical properties selected as response variables (thickness, tensile strength (TS), and elongation at break (EAB). The content of CS (1.1% w/v), GEL (1.1% w/v), and GLY (0.4% w/v) in the film-forming solution guarantees an optimized film (OPT-F) with a 0.046 ± 0.003 mm thickness, 11.48 ± 1.42 mPa TS, and 2.6 ± 0.3% EAB. The OPT-F was characterized in terms of thermal, optical, and biodegradability properties compared to LDPE films. Thermogravimetric analysis (TGA) revealed that the OPT-F was thermally stable at temperatures below 300 °C, which is relevant to thermal processes in the food industry of packaging. The reduced water solubility (WS) (24.34 ± 2.47%) and the improved biodegradability properties (7.1%) compared with LDPE suggests that the biopolymer-based film obtained has potential applications in the food industry as a novel packaging material and can serve as a basis for the design of bioactive packaging.
RESUMO
This article presents new research on producing lignin nanoparticles (LNPs) using the antisolvent nanoprecipitation method. Acetone (90%) served as the lignin solvent and water (100%) as the antisolvent, using five types of lignins from various sources. Comprehensive characterization techniques, including NMR, GPC, FTIR, TEM, and DLS, were employed to assess both lignin and LNP properties. The antioxidant activity of the LNPs was evaluated as well. The results demonstrated the successful formation of spherical nanoparticles below 100 nm with initial lignin concentrations of 1 and 2%w/v. The study highlighted the crucial role of lignin purity in LNP formation and colloidal stability, noting that residual carbohydrates adversely affect efficiency. This method offers a straightforward, environmentally friendly approach using cost-effective solvents, applicable to diverse lignin sources. The innovation of this study lies in its demonstration of a cost-effective and eco-friendly method to produce stable, nanometric-sized spherical LNPs. These LNPs have significant potential as reinforcement materials due to their reinforcing capability, hydrophilicity, and UV absorption. This work underscores the importance of starting material purity for optimizing the process and achieving the desired nanometric dimensions, marking a pioneering advancement in lignin-based nanomaterials.
RESUMO
This study aimed to explore alternative substrates for growing forest species using eucalyptus bark. It evaluated the potential of extracted Eucalyptus globulus fiber bark as a substitute for commercial growing media such as coconut fiber, moss, peat, and compost pine. We determined the physicochemical parameters of the growing media, the germination rate, and the mean fresh and dry weights of seedlings. We used the Munoo-Liisa Vitality Index (MLVI) test to evaluate the phytotoxicity of the bark alone and when mixed with commercial substrates. Generally, the best mixture for seed growth was 75% extracted eucalyptus bark fiber and 25% commercial substrates. In particular, the 75E-25P (peat) mixture is a promising substitute for seedling growth of Pinus radiata, achieving up to 3-times higher MLVI than the control peat alone. For Quillaja saponaria, the best growth substrate was the 50E-50C (coconut fiber) mixture, which had the most significant MLVI values (127%). We added chitosan and alginate-encapsulated fulvic acid phytostimulants to improve the performance of the substrate mixtures. The fulvic acid, encapsulated or not, significantly improved MLVI values in Q. saponaria species and P. radiata in concentrations between 0.05 and 0.1% w/v. This study suggests that mixtures with higher levels of extracted fiber are suitable for growing forest species, thus promoting the application of circular economy principles in forestry.
RESUMO
A type of high molecular weight bioactive polymers called exopolysaccharides (EPS) are produced by thermophiles, the extremophilic microbes that thrive in acidic environmental conditions of hot springs with excessively warm temperatures. Over time, EPS became important as natural biotechnological additives because of their noncytotoxic, emulsifying, antioxidant, or immunostimulant activities. In this article, we unravelled a new EPS produced by Staphylococcus sp. BSP3 from an acidic (pH 6.03) San Pedro hot spring (38.1 °C) located in the central Andean mountains in Chile. Several physicochemical techniques were performed to characterize the EPS structure including Scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). It was confirmed that the amorphous surface of the BSP3 EPS, composed of rough pillar-like nanostructures, is evenly distributed. The main EPS monosaccharide constituents were mannose (72%), glucose (24%) and galactose (4%). Also, it is a medium molecular weight (43.7 kDa) heteropolysaccharide. NMR spectroscopy demonstrated the presence of a [â 6)-âº-D-Manp-(1 â 6)-âº-D-Manp-(1 â] backbone 2-O substituted with 1-âº-D-Manp. A high thermal stability of EPS (287 °C) was confirmed by TGA analysis. Emulsification, antioxidant, flocculation, water-holding (WHC), and oil-holding (OHC) capacities are also studied for biotechnological industry applications. The results demonstrated that BSP3 EPS could be used as a biodegradable material for different purposes, like flocculation and natural additives in product formulation.
RESUMO
In light of the growing bacterial resistance to antibiotics and in the absence of the development of new antimicrobial agents, numerous antimicrobial delivery systems over the past decades have been developed with the aim to provide new alternatives to the antimicrobial treatment of infections. However, there are few studies that focus on the development of a rational design that is accurate based on a set of theoretical-computational methods that permit the prediction and the understanding of hydrogels regarding their interaction with cationic antimicrobial peptides (cAMPs) as potential sustained and localized delivery nanoplatforms of cAMP. To this aim, we employed docking and Molecular Dynamics simulations (MDs) that allowed us to propose a rational selection of hydrogel candidates based on the propensity to form intermolecular interactions with two types of cAMPs (MP-L and NCP-3a). For the design of the hydrogels, specific building blocks were considered, named monomers (MN), co-monomers (CM), and cross-linkers (CL). These building blocks were ranked by considering the interaction with two peptides (MP-L and NCP-3a) as receptors. The better proposed hydrogel candidates were composed of MN3-CM7-CL1 and MN4-CM5-CL1 termed HG1 and HG2, respectively. The results obtained by MDs show that the biggest differences between the hydrogels are in the CM, where HG2 has two carboxylic acids that allow the forming of greater amounts of hydrogen bonds (HBs) and salt bridges (SBs) with both cAMPs. Therefore, using theoretical-computational methods allowed for the obtaining of the best virtual hydrogel candidates according to affinity with the specific cAMP. In conclusion, this study showed that HG2 is the better candidate for future in vitro or in vivo experiments due to its possible capacity as a depot system and its potential sustained and localized delivery system of cAMP.
RESUMO
The present study shows porous activated carbon obtained from Chenopodium quinoa Willd and Quillaja saponaria and their use as potential adsorbents to remove three types of dyes from aqueous solutions. The adsorption results were compared with commercial charcoal to check their efficiency. All porous carbon materials were activated using carbon dioxide and steam and fully characterized. Moreover, the steam-activated samples exhibited a high total pore volume with a BET surface area of around 800 m2 g−1. Batch adsorption experiments showed that commercial charcoal is the charcoal that offered the best adsorption efficiency for tartrazine and sunset yellow FCF. However, in the case of crystal violet, all activated carbons obtained from Chenopodium quinoa Willd and Quillaja saponaria showed the best captures, outperforming commercial charcoal. Molecular dockings of the dyes on the commercial charcoal surface were performed using AutoDock Vina. The kinetic results of the three isotherm's models for the present data follow the order: Langmuir~Freundlich > Temkin.
RESUMO
Codium bernabei is a green alga that grows on Chilean coasts. The composition of its structural polysaccharides is still unknown. Hence, the aim of this work is to isolate and characterize the hot water extracted polysaccharide fractions. For this purpose, the water extracts were further precipitated in alcohol (TPs) and acid media (APs), respectively. Both fractions were characterized using different physicochemical techniques such as GC-MS, GPC, FTIR, TGA, and SEM. It is confirmed that the extracted fractions are mainly made of sulfated galactan unit, with a degree of sulfation of 19.3% (TPs) and 17.4% (ATs) and a protein content of 3.5% in APs and 15.6% in TPs. Other neutral sugars such as xylose, glucose, galactose, fucose, mannose, and arabinose were found in a molar ratio (0.05:0.6:1.0:0.02:0.14:0.11) for TPs and (0.05:0.31:1.0:0.03:0.1:0.13) for ATs. The molecular weight of the polysaccharide samples was lower than 20 kDa. Both polysaccharides were thermally stable (Tonset > 190 °C) and showed antioxidant activity according to the ABTSâ¢+ and DPPH tests, where TPs fractions had higher scavenging activity (35%) compared to the APs fractions. The PT and APTTS assays were used to measure the anticoagulant activity of the polysaccharide fractions. In general, the PT activity of the TPs and APs was not different from normal plasma values. The exception was the TPs treatment at 1000 µg mL−1 concentration. The APTTS test revealed that clotting time for both polysaccharides was prolonged regarding normal values at 1000 µg mL−1. Finally, the antitumor test in colorectal carcinoma (HTC-116) cell line, breast cancer (MCF-7) and human leukemia (HL-60) cell lines showed the cytotoxic effect of TPs and APs. Those results suggest the potential biotechnological application of sulfate galactan polysaccharides isolated from a Chilean marine resource.
Assuntos
Clorófitas , Sulfatos , Anticoagulantes/química , Antioxidantes/farmacologia , Clorófitas/química , Galactanos/química , Humanos , Polissacarídeos/química , Sulfatos/química , ÁguaRESUMO
Extremophilic microorganisms often produce novel bioactive compounds to survive under harsh environmental conditions. Exopolysaccharides (EPSs), a constitutive part of bacterial biofilm, are functional biopolymers that act as a protecting sheath to the extremophilic bacteria and are of high industrial value. In this study, we elucidate a new EPS produced by thermophilic Bacillus haynesii CamB6 from a slightly acidic (pH 5.82) Campanario hot spring (56.4 °C) located in the Central Andean Mountains of Chile. Physicochemical properties of the EPS were characterized by different techniques: Scanning electron microscopy- energy dispersive X-ray spectroscopy (SEM-EDS), Atomic Force Microscopy (AFM), High-Performance Liquid Chromatography (HPLC), Gel permeation chromatography (GPC), Fourier Transform Infrared Spectroscopy (FTIR), 1D and 2D Nuclear Magnetic Resonance (NMR), and Thermogravimetric analysis (TGA). The EPS demonstrated amorphous surface roughness composed of evenly distributed macromolecular lumps. GPC and HPLC analysis showed that the EPS is a low molecular weight heteropolymer composed of mannose (66%), glucose (20%), and galactose (14%). FTIR analysis demonstrated the polysaccharide nature (-OH groups, Acetyl groups, and pyranosic ring structure) and the presence of different glycosidic linkages among sugar residues, which was further confirmed by NMR spectroscopic analyses. Moreover, D-mannose α-(1â2) and α-(1â4) linkages prevail in the CamB6 EPS structure. TGA revealed the high thermal stability (240 °C) of the polysaccharide. The functional properties of the EPS were evaluated for food industry applications, specifically as an antioxidant and for its emulsification, water-holding (WHC), oil-holding (OHC), and flocculation capacities. The results suggest that the study EPS can be a useful additive for the food-processing industry.
Assuntos
Bacillus , Polissacarídeos Bacterianos , Peso Molecular , Polissacarídeos Bacterianos/química , Espectroscopia de Infravermelho com Transformada de FourierRESUMO
Plant biochemistry studies have increased in recent years due to their potential to improve human health. Argylia radiata is an extremophile plant with an interesting polyphenolic profile. However, its biomass is scarce and occasionally available. Argylia in vitro biomass was obtained from tissue culture and compared with in vivo roots regarding its polyphenolic and flavonoid content. Different solvents were used to prepare extracts from the in vitro tissue of callus and aerial plant organs and in vivo roots. UPLC-MS/MS was used to assess the chemical composition of each extract. ORAC-FL and scavenging of free radicals (DPPH and OH) methods were used to determine the antioxidant capacity of extracts. Furthermore, the biological activity of the extracts was established using the cellular antioxidant activity method. The vitroplants were a good source of polyphenols (25-68 mg GAE/100 g tissue FW), and methanol was the most efficient solvent. Eight polyphenolic compounds were identified, and their antioxidant properties were investigated by different chemical methods with EPR demonstrating its specific scavenging activity against free radicals. All extracts showed cellular dose-dependent antioxidant activity. The methanolic extract of vitroplants showed the highest cellular antioxidant activity (44.6% and 51%) at 1 and 10 µg/mL of extract, respectively. Vitroplants of A. radiata are proposed as a biotechnological product as a source of antioxidant compounds with multiple applications.
Assuntos
Antioxidantes/farmacologia , Begoniaceae/química , Sequestradores de Radicais Livres/farmacologia , Raízes de Plantas/química , Polifenóis/análise , Polifenóis/farmacologia , Solventes/químicaRESUMO
Thermophilic bacteria able to survive extreme temperature stress are of great biotechnological interest due to their extracellular production of bioactive molecules as a part of a survival strategy, or by intracellular modifications. In the present study, thermophilic Bacillus haynesii CamB6, isolated from a Chilean hot spring, was studied for the formation of different stress response molecules. The polymeric pigment produced by the bacterial strain was characterized by different physicochemical techniques. On exposure to ranges of temperature (50-60 °C), pH (5.0-7.0), and sources of nitrogen and carbon (1-5 g·L-1), the bacteria responded with a biofilm network formation in a hydrophobic polystyrene surface. Biofilm formation under fed-batch conditions was also statistically validated. The bacteria showed a planktonic pellicle network formation in the presence of induced hypoxia and salinity stress (19.45 g·L-1) under static conditions. Salinity stress also resulted in the intracellular response of brown pigment production. The pigment was structurally and functionally characterized by UV-Vis absorbance and the presence of different characteristic peaks via FTIR analysis (bacterial pyomelanin fingerprints) were assessed. A high thermal stability and TGA profile indicated the brown pigment was a probable pyomelanin candidate. Micropyrolysis (Py-GC/MS) showed that isoprene, pyrrole, benzene, pyridine, and their derivatives were the major components detected. In addition, acetic acid, indole, phenol, and its derivatives were observed. The absence of sulfocompounds in the pyrolyzed products agreed with those reported in the literature for pyomelanin. The pigment surface morphology was analyzed via SEM, and the elemental composition via EDS also demonstrated the similarity of the brown pigment to that of the melanin family. The pyomelanin pigment was observed to be bioactive with promising antioxidant capacity (H2O2, Fe2+) compared to the standard antioxidant molecules. In conclusion, B. haynesii CamB6 demonstrated the formation of several biomolecules as a stress response mechanism that is bioactive, showing its probable biotechnological applications in future.
RESUMO
This study investigated the biocomposite pectin films enriched with murta (Ugni molinae T.) seed polyphenolic extract and reinforced by chitin nanofiber. The structural, morphological, mechanical, barrier, colorimetric, and antioxidant activity of films were evaluated. The obtained data clearly demonstrated that the addition of murta seed extract and the high load of chitin nanofibers (50%) provided more cohesive and dense morphology of films and improved the mechanical resistance and water vapor barrier in comparison to the control pectin film. The antioxidant activity ranged between 71% and 86%, depending on the film formulation and concentration of chitin nanofibers. The presented results highlight the potential use of chitin nanofibers and murta seed extract in the pectin matrix to be applied in functional food coatings and packaging, as a sustainable solution.
Assuntos
Materiais Biocompatíveis/química , Quitina/química , Myrtaceae/química , Nanofibras/química , Pectinas/química , Extratos Vegetais/química , Materiais Biocompatíveis/isolamento & purificação , Embalagem de Alimentos , Tamanho da Partícula , Pectinas/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Sementes/químicaRESUMO
Pesticides are used worldwide to increase crop yields in agriculture. However, their toxicity and accumulation capacity can make them toxic to the environment, animals and humans. In the case of workers chronically exposed to these substances, they must be sampled continuously, so urine is an excellent option. In this sense, this study proposes to use poly(vinyl alcohol)-malic acid hydrogels, and chitosan-coated calcium alginate as new sorbent phases to be used in pesticide determination processes in urine. To better understand the behavior of these materials in the capture and desorption process, molecular dynamics simulations (MDS) were used, and desorption experiments were performed, using mechanical agitation, ultrasound, and pH variation in the desorption process, in order to optimize the parameters to obtain better recoveries. Under the optimal experimental conditions, the maximum recoveries were of the order of 11% (CFN), 3% (KCF), 53% (DMT), 18% (MTD) and 35% (MTL). Although the recoveries were not exhaustive, they are a first approximation for the use of these new sorbent phases in the determination of this type of compound in aqueous solutions and urine.
RESUMO
Various microorganisms thrive under extreme environments, like hot springs, hydrothermal vents, deep marine ecosystems, hyperacid lakes, acid mine drainage, high UV exposure, and more. To survive against the deleterious effect of these extreme circumstances, they form a network of biofilm where exopolysaccharides (EPSs) comprise a substantial part. The EPSs are often polyanionic due to different functional groups in their structural backbone, including uronic acids, sulfated units, and phosphate groups. Altogether, these chemical groups provide EPSs with a negative charge allowing them to (a) act as ligands toward dissolved cations as well as trace, and toxic metals; (b) be tolerant to the presence of salts, surfactants, and alpha-hydroxyl acids; and (c) interface the solubilization of hydrocarbons. Owing to their unique structural and functional characteristics, EPSs are anticipated to be utilized industrially to remediation of metals, crude oil, and hydrocarbons from contaminated wastewaters, mines, and oil spills. The biotechnological advantages of extremophilic EPSs are more diverse than traditional biopolymers. The present review aims at discussing the mechanisms and strategies for using EPSs from extremophiles in industries and environment bioremediation. Additionally, the potential of EPSs as fascinating biomaterials to mediate biogenic nanoparticles synthesis and treat multicomponent water contaminants is discussed.
RESUMO
Glycosyltransferase (GTs) is a wide class of enzymes that transfer sugar moiety, playing a key role in the synthesis of bacterial exopolysaccharide (EPS) biopolymer. In recent years, increased demand for bacterial EPSs has been observed in pharmaceutical, food, and other industries. The application of the EPSs largely depends upon their thermal stability, as any industrial application is mainly reliant on slow thermal degradation. Keeping this in context, EPS producing GT enzymes from three different bacterial sources based on growth temperature (mesophile, thermophile, and hyperthermophile) are considered for in silico analysis of the structural-functional relationship. From the present study, it was observed that the structural integrity of GT increases significantly from mesophile to thermophile to hyperthermophile. In contrast, the structural plasticity runs in an opposite direction towards mesophile. This interesting temperature-dependent structural property has directed the GT-UDP-glucose interactions in a way that thermophile has finally demonstrated better binding affinity (-5.57 to -10.70) with an increased number of hydrogen bonds (355) and stabilizing amino acids (Phe, Ala, Glu, Tyr, and Ser). The results from this study may direct utilization of thermophile-origin GT as best for industrial-level bacterial polysaccharide production.
RESUMO
ß-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of ß-chitin. The SEM, TEM, and XRD characterization results verified that ß-chitin crystalline structure were maintained after mechanical treatment. The mean particle size of ß-chitin nanofibers was in the range between 10 and 15 nm, according to the TEM analysis. In addition, the ß-chitin nanofibers were converted into films by the simple solvent-casting and drying process at 60 °C. The obtained films had high lightness, which was evidenced by the CIELAB color test. Moreover, the films showed the medium swelling degree (250-290%) in aqueous solutions of different pH and good mechanical resistance in the range between 4 and 17 MPa, depending on film thickness. The results obtained in this work show that marine waste can be efficiently converted to biomaterial by use of mild extractive conditions and simple mechanical treatment, offering great potential for the future development of sustainable multifunctional materials for various industrial applications such as food packaging, agriculture, and/or wound dressing.
Assuntos
Materiais Biocompatíveis , Quitina/isolamento & purificação , Decapodiformes/metabolismo , Nanofibras , Resíduos , Animais , Configuração de Carboidratos , Quitina/química , Tamanho da Partícula , Propriedades de Superfície , ViscosidadeRESUMO
Organoclay nanoparticles (Cloisite® C10A, Cloisite® C15) and their combination with carbon black (N330) were studied as fillers in chloroprene/natural/butadiene rubber blends to prepare nanocomposites. The effect of filler type and load on the physical mechanical properties of nanocomposites was determined and correlated with its structure, compatibility and cure properties using Fourier Transformed Infrared (FT-IR), X-ray Diffraction (XRD), Thermogravimetric Analysis (TGA) and rheometric analysis. Physical mechanical properties were improved by organoclays at 5-7 phr. Nanocomposites with organoclays exhibited a remarkable increase up to 46% in abrasion resistance. The improvement in properties was attributed to good organoclay dispersion in the rubber matrix and to the compatibility between them and the chloroprene rubber. Carbon black at a 40 phr load was not the optimal concentration to interact with organoclays. The present study confirmed that organoclays can be a reinforcing filler for high performance applications in rubber nanocomposites.
RESUMO
The polyphenolic distribution on different organs of Argylia radiata, an extremophile plant from the Atacama "Flowering Desert", is presented herein for the first time. For this purpose, the total phenolic content and antioxidant capacity of ethanolic extracts from leaves, tuberous root and flowers of different colors were evaluated. Orange and red flowers showed the highest polyphenolic and flavonoid content. The maximum anthocyanin concentration was found in red flowers and the antioxidant activity (FRAP) of extracts changed according to the organ. The UPLC-MS/MS analysis of the extracts allowed to identify 10 new polyphenols belonging to different families. Rutin was identified as the most abundant polyphenol in all plant organs, followed by quercetin and coumaric acid. Their role in plant response to abiotic and biotic stress, as well as their potential biotechnological application are discussed.
Assuntos
Antioxidantes/farmacologia , Bignoniaceae/química , Extratos Vegetais/farmacologia , Polifenóis , Chile , Cromatografia Líquida , Clima Desértico , Extremófilos , Flavonoides/análise , Flavonoides/farmacologia , Folhas de Planta/química , Polifenóis/análise , Polifenóis/farmacologia , Espectrometria de Massas em TandemRESUMO
The aim of this study was evaluation of the physico-chemical properties and adhesion of microorganisms on poly(lactic acid) (PLA)-based films loaded with grapevine cane extract (5-15 wt%). The films were processed in a compression molding machine and characterized by mechanical, thermal, water vapor barrier and microbiological tests. The best physical-chemical properties for PLA film containing 10 wt% of extract were obtained. The addition of 10 wt% of extract into PLA films led to decrease of tensile strength for 52% and increase in elongation at break for 30%. The water vapor barrier of this film formulation was enhanced for 55%. All films showed thermal stability up to 300 °C. The low release of the active compounds from films negatively influenced their antimicrobial and antifungal activity. Botrytis cinerea growth inhibition onto PLA containing extracts (PLA-E) films was in the range between 15 and 35%. On the other side, PLA/extract films exhibited the antiadhesive properties against Pseudomonas aeruginosa, Pectobacterium carotovorum, Saccharomyces pastorianus, and Listeria monocytogenes, which could imply their potential to be used as sustainable food packaging materials for preventing microbial contamination of food.
RESUMO
A series of hydrogels with a specific release profile of linezolid was successfully synthesized. The hydrogels were synthesized by cross-linking polyvinyl alcohol (PVA) and aliphatic dicarboxylic acids, which include succinic acid (SA), glutaric acid (GA), and adipic acid (AA). The three crosslinked hydrogels were prepared by esterification and characterized by equilibrium swelling ratio, infrared spectroscopy, thermogravimetric analysis, mechanical properties, and scanning electron microscopy. The release kinetics studies of the linezolid from prepared hydrogels were investigated by cumulative drug release and quantified by chromatographic techniques. Mathematical models were carried out to understand the behavior of the linezolid release. These data revealed that the sustained release of linezolid depends on the aliphatic dicarboxylic acid chain length, their polarity, as well as the hydrogel crosslinking degree and mechanical properties. The in vitro antibacterial assay of hydrogel formulations was assessed in an Enterococcus faecium bacterial strain, showing a significant activity over time. The antibacterial results were consistent with cumulative release assays. Thus, these results demonstrated that the aliphatic dicarboxylic acids used as crosslinkers in the PVA hydrogels were a determining factor in the antibiotic release profile.
RESUMO
BACKGROUND: Quinoa (Chenopodium quinoa Willd) is an Andean original pseudocereal with high nutritional value. During quinoa processing, large amounts of saponin-rich husks byproducts are obtained. Quinoa saponins, which are biologically active, could be used for various agriculture purposes. Silver nanoparticles have increasingly attracted attention for the management of crop diseases in agriculture. In this work, silver nanoparticles are synthesized by a sustainable and green method, using quinoa husk saponin extract (QE) to evaluate their potential for application in agriculture as biostimulants. RESULTS: Quinoa extract was obtained and characterized by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Sixteen saponin congeners were successfully identified and quantified. The QE obtained was used as a reducing agent for silver ions to synthesize silver nanoparticles (QEAgNPs) under mild conditions. The morphology, particle size, and stability of Ag nanoparticles were investigated by transmission electron microscopy (TEM), ultraviolet-visible spectroscopy (UV-visible), energy-dispersive X-ray (EDS), zeta potential, and Fourier transform infrared spectroscopy with attenuated total reflection (FTIR-ATR). Ultraviolet-visible spectroscopy measurements confirmed the formation of silver nanoparticles in the presence of QE, with estimated particle sizes in a range between 5 and 50 nm. According to the zeta potential values, highly stable nanoparticles were formed. The QE and QEAgNPs (200-1000 µg/mL) were also tested in radish seed bioassay to evaluate their phytotoxicity. The seed germination assays revealed that QEAgNPs possessed a phytostimulant effect on radish seeds in a dose-dependent manner, and no phytotoxicity was observed for both QE and QEAgNPs. CONCLUSION: Silver nanoparticles obtained by a so-called 'green' method could be considered as good candidates for application in the agricultural sector for seed treatment, or as foliar sprays and plant-growth-promoters. © 2020 Society of Chemical Industry.