Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 117(3): 1779-1787, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31907321

RESUMO

Insects are highly successful, in part through an excellent ability to osmoregulate. The renal (Malpighian) tubules can secrete fluid faster on a per-cell basis than any other epithelium, but the route for these remarkable water fluxes has not been established. In Drosophila melanogaster, we show that 4 genes of the major intrinsic protein family are expressed at a very high level in the fly renal tissue: the aquaporins (AQPs) Drip and Prip and the aquaglyceroporins Eglp2 and Eglp4 As predicted from their structure, and by their transport function by expressing these proteins in Xenopus oocytes, Drip, Prip, and Eglp2 show significant and specific water permeability, whereas Eglp2 and Eglp4 show very high permeability to glycerol and urea. Knockdowns of any of these genes result in impaired hormone-induced fluid secretion. The Drosophila tubule has 2 main secretory cell types: active cation-transporting principal cells, wherein the aquaglyceroporins localize to opposite plasma membranes, and small stellate cells, the site of the chloride shunt conductance, with these AQPs localizing to opposite plasma membranes. This suggests a model in which osmotically obliged water flows through the stellate cells. Consistent with this model, fluorescently labeled dextran, an in vivo marker of membrane water permeability, is trapped in the basal infoldings of the stellate cells after kinin diuretic peptide stimulation, confirming that these cells provide the major route for transepithelial water flux. The spatial segregation of these components of epithelial water transport may help to explain the unique success of the higher insects in regulating their internal environments.


Assuntos
Transporte Biológico/fisiologia , Drosophila melanogaster/fisiologia , Túbulos Renais/metabolismo , Água/metabolismo , Animais , Aquagliceroporinas/genética , Aquagliceroporinas/metabolismo , Aquaporinas/genética , Aquaporinas/metabolismo , Permeabilidade da Membrana Celular , Cloretos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Túbulos Renais/citologia , Masculino , Túbulos de Malpighi/metabolismo , Modelos Animais , Oócitos/metabolismo , Osmorregulação , Xenopus
2.
Am J Physiol Renal Physiol ; 317(4): F930-F940, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31364377

RESUMO

Nephrolithiasis is one of the most common kidney diseases, with poorly understood pathophysiology, but experimental study has been hindered by lack of experimentally tractable models. Drosophila melanogaster is a useful model organism for renal diseases because of genetic and functional similarities of Malpighian (renal) tubules with the human kidney. Here, we demonstrated function of the sex-determining region Y protein-interacting protein-1 (Sip1) gene, an ortholog of human Na+/H+ exchanger regulatory factor (NHERF1), in Drosophila Malpighian tubules and its impact on nephrolithiasis. Abundant birefringent calculi were observed in Sip1 mutant flies, and the phenotype was also observed in renal stellate cell-specific RNA interference Sip1 knockdown in otherwise normal flies, confirming a renal etiology. This phenotype was abolished in rosy mutant flies (which model human xanthinuria) and by the xanthine oxidase inhibitor allopurinol, suggesting that the calculi were of uric acid. This was confirmed by direct biochemical assay for urate. Stones rapidly dissolved when the tubule was bathed in alkaline media, suggesting that Sip1 knockdown was acidifying the tubule. SIP1 was shown to collocate with Na+/H+ exchanger isoform 2 (NHE2) and with moesin in stellate cells. Knockdown of NHE2 specifically to the stellate cells also increased renal uric acid stone formation, and so a model was developed in which SIP1 normally regulates NHE2 activity and luminal pH, ultimately leading to uric acid stone formation. Drosophila renal tubules may thus offer a useful model for urate nephrolithiasis.


Assuntos
Túbulos de Malpighi/metabolismo , Nefrolitíase/genética , Nefrolitíase/metabolismo , Fosfoproteínas/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Ácido Úrico/metabolismo , Alopurinol/farmacologia , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Inibidores Enzimáticos/farmacologia , Técnicas de Silenciamento de Genes , Proteínas dos Microfilamentos/metabolismo , Mutação/genética , Nefrolitíase/induzido quimicamente
3.
Development ; 146(9)2019 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-31036543

RESUMO

The GATA family of transcription factors is implicated in numerous developmental and physiological processes in metazoans. In Drosophila melanogaster, five different GATA factor genes (pannier, serpent, grain, GATAd and GATAe) have been reported as essential in the development and identity of multiple tissues, including the midgut, heart and brain. Here, we present a novel role for GATAe in the function and homeostasis of the Drosophila renal (Malpighian) tubule. We demonstrate that reduced levels of GATAe gene expression in tubule principal cells induce uncontrolled cell proliferation, resulting in tumorous growth with associated altered expression of apoptotic and carcinogenic key genes. Furthermore, we uncover the involvement of GATAe in the maintenance of stellate cells and migration of renal and nephritic stem cells into the tubule. Our findings of GATAe as a potential master regulator in the events of growth control and cell survival required for the maintenance of the Drosophila renal tubule could provide new insights into the molecular pathways involved in the formation and maintenance of a functional tissue and kidney disease.


Assuntos
Proteínas de Drosophila/metabolismo , Fatores de Transcrição GATA/metabolismo , Túbulos Renais/metabolismo , Animais , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Drosophila , Proteínas de Drosophila/genética , Feminino , Fatores de Transcrição GATA/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia
4.
Methods Mol Biol ; 1926: 203-221, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30742274

RESUMO

The insect renal (Malpighian) tubule has long been a model system for the study of fluid secretion and its neurohormonal control, as well as studies on ion transport mechanisms. To extend these studies beyond the boundaries of classical physiology, a molecular genetic approach together with the 'omics technologies is required. To achieve this in any vertebrate transporting epithelium remains a daunting task, as the genetic tools available are still relatively unsophisticated. Drosophila melanogaster, however, is an outstanding model organism for molecular genetics. Here we describe a technique for fluid secretion assays in the D. melanogaster equivalent of the kidney nephron. The development of this first physiological assay for a Drosophila epithelium, allowing combined approaches of integrative physiology and functional genomics, has now provided biologists with an entirely new model system, the Drosophila Malpighian tubule, which is utilized in multiple fields as diverse as kidney disease research and development of new modes of pest insect control.


Assuntos
Rim/citologia , Rim/metabolismo , Túbulos de Malpighi/citologia , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Nefropatias/metabolismo , Túbulos de Malpighi/metabolismo
5.
Am J Physiol Renal Physiol ; 316(2): F263-F273, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30520657

RESUMO

Zinc (Zn2+) is the second most abundant trace element, but is considered a micronutrient, as it is a cofactor for many enzymes and transcription factors. Whereas Zn2+ deficiency can cause cognitive immune or metabolic dysfunction and infertility, excess Zn2+ is nephrotoxic. As for other ions and solutes, Zn2+ is moved into and out of cells by specific membrane transporters: ZnT, Zip, and NRAMP/DMT proteins. ZIP10 is reported to be localized at the apical membrane of renal proximal tubules in rats, where it is believed to play a role in Zn2+ import. Renal regulation of Zn2+ is of particular interest in light of growing evidence that Zn2+ may play a role in kidney stone formation. The objective of this study was to show that ZIP10 homologs transport Zn2+, as well as ZIP10, kidney localization across species. We cloned ZIP10 from dog, human, and Drosophila ( CG10006), tested clones for Zn2+ uptake in Xenopus oocytes and localized the protein in renal structures. CG10006, rather than foi (fear-of-intimacy, CG6817) is the primary ZIP10 homolog found in Drosophila Malpighian tubules. The ZIP10 antibody recognizes recombinant dog, human, and Drosophila ZIP10 proteins. Immunohistochemistry reveals that ZIP10 in higher mammals is found not only in the proximal tubule, but also in the collecting duct system. These ZIP10 proteins show Zn2+ transport. Together, these studies reveal ZIP10 kidney localization, a role in renal Zn2+ transport, and indicates that CG10006 is a Drosophila homolog of ZIP10.


Assuntos
Proteínas de Transporte de Cátions/metabolismo , Clonagem Molecular , Proteínas de Drosophila/metabolismo , Túbulos Renais Coletores/metabolismo , Túbulos Renais Proximais/metabolismo , Túbulos de Malpighi/metabolismo , Zinco/metabolismo , Animais , Transporte Biológico , Proteínas de Transporte de Cátions/genética , Cães , Proteínas de Drosophila/genética , Humanos , Especificidade da Espécie , Xenopus laevis
6.
Am J Physiol Renal Physiol ; 310(2): F152-9, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26538444

RESUMO

Nephrolithiasis is one of the most common urinary tract disorders, with the majority of kidney stones composed of calcium oxalate (CaOx). Given its prevalence (US occurrence 10%), it is still poorly understood, lacking progress in identifying new therapies because of its complex etiology. Drosophila melanogaster (fruitfly) is a recently developed model of CaOx nephrolithiasis. Effects of sulfate and thiosulfate on crystal formation were investigated using the Drosophila model, as well as electrophysiological effects on both Drosophila (Slc26a5/6; dPrestin) and mouse (mSlc26a6) oxalate transporters utilizing the Xenopus laevis oocyte heterologous expression system. Results indicate that both transport thiosulfate with a much higher affinity than sulfate Additionally, both compounds were effective at decreasing CaOx crystallization when added to the diet. However, these results were not observed when compounds were applied to Malpighian tubules ex vivo. Neither compound affected CaOx crystallization in dPrestin knockdown animals, indicating a role for principal cell-specific dPrestin in luminal oxalate transport. Furthermore, thiosulfate has a higher affinity for dPrestin and mSlc26a6 compared with oxalate These data indicate that thiosulfate's ability to act as a competitive inhibitor of oxalate via dPrestin, can explain the decrease in CaOx crystallization seen in the presence of thiosulfate, but not sulfate. Overall, our findings predict that thiosulfate or oxalate-mimics may be effective as therapeutic competitive inhibitors of CaOx crystallization.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Oxalato de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Nefrolitíase/metabolismo , Ácido Oxálico/metabolismo , Sulfatos/farmacologia , Tiossulfatos/farmacologia , Animais , Modelos Animais de Doenças , Drosophila melanogaster , Transporte de Íons/efeitos dos fármacos , Camundongos , Transportadores de Sulfato
7.
Insect Biochem Mol Biol ; 67: 38-46, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26073628

RESUMO

The exposure of insects to xenobiotics, such as insecticides, triggers a complex defence response necessary for survival. This response includes the induction of genes that encode key Cytochrome P450 monooxygenase detoxification enzymes. Drosophila melanogaster Malpighian (renal) tubules are critical organs in the detoxification and elimination of these foreign compounds, so the tubule response induced by dietary exposure to the insecticide permethrin was examined. We found that expression of the gene encoding Cytochrome P450-4e3 (Cyp4e3) is significantly up-regulated by Drosophila fed on permethrin and that manipulation of Cyp4e3 levels, specifically in the principal cells of the Malpighian tubules, impacts significantly on the survival of permethrin-fed flies. Both dietary exposure to permethrin and Cyp4e3 knockdown cause a significant elevation of oxidative stress-associated markers in the tubules, including H2O2 and lipid peroxidation byproduct, HNE (4-hydroxynonenal). Thus, Cyp4e3 may play an important role in regulating H2O2 levels in the endoplasmic reticulum (ER) where it resides, and its absence triggers a JAK/STAT and NF-κB-mediated stress response, similar to that observed in cells under ER stress. This work increases our understanding of the molecular mechanisms of insecticide detoxification and provides further evidence of the oxidative stress responses induced by permethrin metabolism.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/genética , Inseticidas , Permetrina , Aldeídos/metabolismo , Animais , Animais Geneticamente Modificados , Sistema Enzimático do Citocromo P-450/metabolismo , Drosophila melanogaster/metabolismo , Retículo Endoplasmático/metabolismo , Feminino , Expressão Gênica , Peróxido de Hidrogênio/metabolismo , Inativação Metabólica , Resistência a Inseticidas , Inseticidas/farmacocinética , Masculino , Túbulos de Malpighi/metabolismo , Permetrina/farmacocinética
8.
Insect Biochem Mol Biol ; 67: 47-58, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26003916

RESUMO

Renal function is essential to maintain homeostasis. This is particularly significant for insects that undergo complete metamorphosis; larval mosquitoes must survive a freshwater habitat whereas adults are terrestrial, and mature females must maintain ion and fluid homeostasis after blood feeding. To investigate the physiological adaptations required for successful development to adulthood, we studied the Malpighian tubule transcriptome of Anopheles gambiae using Affymetrix arrays. We assessed transcription under several conditions; as third instar larvae, as adult males fed on sugar, as adult females fed on sugar, and adult females after a blood meal. In addition to providing the most detailed transcriptomic data to date on the Anopheles Malpighian tubules, the data provide unique information on the renal adaptations required for the switch from freshwater to terrestrial habitats, on gender differences, and on the contrast between nectar-feeding and haematophagy. We found clear differences associated with ontogenetic change in lifestyle, gender and diet, particularly in the neuropeptide receptors that control fluid secretion, and the water and ion transporters that impact volume and composition. These data were also combined with transcriptomics from the Drosophila melanogaster tubule, allowing meta-analysis of the genes which underpin tubule function across Diptera. To further investigate renal conservation across species we selected four D. melanogaster genes with orthologues highly enriched in the Anopheles tubules, and generated RNAi knockdown flies. Three of these genes proved essential, showing conservation of critical functions across 150 million years of phylogenetic separation. This extensive data-set is available as an online resource, MozTubules.org, and could potentially be mined for novel insecticide targets that can impact this critical organ in this pest species.


Assuntos
Anopheles/crescimento & desenvolvimento , Anopheles/fisiologia , Drosophila melanogaster/fisiologia , Túbulos de Malpighi/crescimento & desenvolvimento , Transcriptoma , Adaptação Fisiológica , Animais , Anopheles/genética , Drosophila melanogaster/genética , Ecossistema , Feminino , Insetos Vetores , Larva/genética , Larva/crescimento & desenvolvimento , Larva/fisiologia , Malária , Masculino , Túbulos de Malpighi/fisiologia , Receptores de Neuropeptídeos/genética , Fatores Sexuais
9.
Nat Commun ; 6: 6800, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25896425

RESUMO

Knowledge on neuropeptide receptor systems is integral to understanding animal physiology. Yet, obtaining general insight into neuropeptide signalling in a clade as biodiverse as the insects is problematic. Here we apply fluorescent analogues of three key insect neuropeptides to map renal tissue architecture across systematically chosen representatives of the major insect Orders, to provide an unprecedented overview of insect renal function and control. In endopterygote insects, such as Drosophila, two distinct transporting cell types receive separate neuropeptide signals, whereas in the ancestral exopterygotes, a single, general cell type mediates all signals. Intriguingly, the largest insect Order Coleoptera (beetles) has evolved a unique approach, in which only a small fraction of cells are targets for neuropeptide action. In addition to demonstrating a universal utility of this technology, our results reveal not only a generality of signalling by the evolutionarily ancient neuropeptide families but also a clear functional separation of the types of cells that mediate the signal.


Assuntos
Besouros/genética , Besouros/fisiologia , Insetos/genética , Insetos/fisiologia , Rim/fisiologia , Animais , Corantes Fluorescentes , Regulação da Expressão Gênica/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Rim/citologia , Cininas/genética , Cininas/metabolismo , Túbulos de Malpighi/fisiologia , Filogenia , Sensibilidade e Especificidade , Especificidade da Espécie
10.
Proc Natl Acad Sci U S A ; 112(9): 2882-7, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25730885

RESUMO

The success of insects is linked to their impressive tolerance to environmental stress, but little is known about how such responses are mediated by the neuroendocrine system. Here we show that the capability (capa) neuropeptide gene is a desiccation- and cold stress-responsive gene in diverse dipteran species. Using targeted in vivo gene silencing, physiological manipulations, stress-tolerance assays, and rationally designed neuropeptide analogs, we demonstrate that the Drosophila melanogaster capa neuropeptide gene and its encoded peptides alter desiccation and cold tolerance. Knockdown of the capa gene increases desiccation tolerance but lengthens chill coma recovery time, and injection of capa peptide analogs can reverse both phenotypes. Immunohistochemical staining suggests that capa accumulates in the capa-expressing Va neurons during desiccation and nonlethal cold stress but is not released until recovery from each stress. Our results also suggest that regulation of cellular ion and water homeostasis mediated by capa peptide signaling in the insect Malpighian (renal) tubules is a key physiological mechanism during recovery from desiccation and cold stress. This work augments our understanding of how stress tolerance is mediated by neuroendocrine signaling and illustrates the use of rationally designed peptide analogs as agents for disrupting protective stress tolerance.


Assuntos
Resposta ao Choque Frio , Desidratação/metabolismo , Proteínas de Drosophila/biossíntese , Regulação da Expressão Gênica , Túbulos de Malpighi/metabolismo , Neurônios/metabolismo , Neuropeptídeos/biossíntese , Animais , Temperatura Baixa , Desidratação/genética , Desidratação/patologia , Proteínas de Drosophila/genética , Drosophila melanogaster , Túbulos de Malpighi/patologia , Neurônios/patologia , Neuropeptídeos/genética , Transdução de Sinais/genética
11.
Proc Natl Acad Sci U S A ; 111(39): 14301-6, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25228763

RESUMO

Epithelia frequently segregate transport processes to specific cell types, presumably for improved efficiency and control. The molecular players underlying this functional specialization are of particular interest. In Drosophila, the renal (Malpighian) tubule displays the highest per-cell transport rates known and has two main secretory cell types, principal and stellate. Electrogenic cation transport is known to reside in the principal cells, whereas stellate cells control the anion conductance, but by an as-yet-undefined route. Here, we resolve this issue by showing that a plasma membrane chloride channel, encoded by ClC-a, is exclusively expressed in the stellate cell and is required for Drosophila kinin-mediated induction of diuresis and chloride shunt conductance, evidenced by chloride ion movement through the stellate cells, leading to depolarization of the transepithelial potential. By contrast, ClC-a knockdown had no impact on resting secretion levels. Knockdown of a second CLC gene showing highly abundant expression in adult Malpighian tubules, ClC-c, did not impact depolarization of transepithelial potential after kinin stimulation. Therefore, the diuretic action of kinin in Drosophila can be explained by an increase in ClC-a-mediated chloride conductance, over and above a resting fluid transport level that relies on other (ClC-a-independent) mechanisms or routes. This key segregation of cation and anion transport could explain the extraordinary fluid transport rates displayed by some epithelia.


Assuntos
Canais de Cloreto/fisiologia , Diurese/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Neuropeptídeos/fisiologia , Animais , Animais Geneticamente Modificados , Canais de Cloreto/deficiência , Canais de Cloreto/genética , Diurese/genética , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Feminino , Técnicas de Silenciamento de Genes , Genes de Insetos , Cininas/fisiologia , Masculino , Túbulos de Malpighi/citologia , Túbulos de Malpighi/fisiologia , Modelos Biológicos
12.
J Exp Biol ; 217(Pt 1): 119-28, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24353211

RESUMO

Insects successfully occupy most environmental niches and this success depends on surviving a broad range of environmental stressors including temperature, desiccation, xenobiotic, osmotic and infection stress. Epithelial tissues play key roles as barriers between the external and internal environments and therefore maintain homeostasis and organismal tolerance to multiple stressors. As such, the crucial role of epithelia in organismal stress tolerance cannot be underestimated. At a molecular level, multiple cell-specific signalling pathways including cyclic cAMP, cyclic cGMP and calcium modulate tissue, and hence, organismal responses to stress. Thus, epithelial cell-specific signal transduction can be usefully studied to determine the molecular mechanisms of organismal stress tolerance in vivo. This review will explore cell signalling modulation of stress tolerance in insects by focusing on cell signalling in a fluid transporting epithelium--the Malpighian tubule. Manipulation of specific genes and signalling pathways in only defined tubule cell types can influence the survival outcome in response to multiple environmental stressors including desiccation, immune, salt (ionic) and oxidative stress, suggesting that studies in the genetic model Drosophila melanogaster may reveal novel pathways required for stress tolerance.


Assuntos
Desidratação , Drosophila melanogaster/metabolismo , Túbulos de Malpighi/fisiologia , Pressão Osmótica/fisiologia , Estresse Oxidativo/fisiologia , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Meio Ambiente , Homeostase , Túbulos de Malpighi/citologia , Mucosa/fisiologia , Transdução de Sinais
13.
Gen Comp Endocrinol ; 188: 60-6, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23557645

RESUMO

The capa peptide family, originally identified in the tobacco hawk moth, Manduca sexta, is now known to be present in many insect families, with increasing publications on capa neuropeptides each year. The physiological actions of capa peptides vary depending on the insect species but capa peptides have key myomodulatory and osmoregulatory functions, depending on insect lifestyle, and life stage. Capa peptide signaling is thus critical for fluid homeostasis and survival, making study of this neuropeptide family attractive for novel routes for insect control. In Dipteran species, including the genetically tractable Drosophila melanogaster, capa peptide action is diuretic; via elevation of nitric oxide, cGMP and calcium in the principal cells of the Malpighian tubules. The identification of the capa receptor (capaR) in several insect species has shown this to be a canonical GPCR. In D. melanogaster, ligand-activated capaR activity occurs in a dose-dependent manner between 10(-6) and 10(-12)M. Lower concentrations of capa peptide do not activate capaR, either in adult or larval Malpighian tubules. Use of transgenic flies in which capaR is knocked-down in only Malpighian tubule principal cells demonstrates that capaR modulates tubule fluid secretion rates and in doing so, sets the organismal response to desiccation. Thus, capa regulates a desiccation-responsive pathway in D. melanogaster, linking its role in osmoregulation and fluid homeostasis to environmental response and survival. The conservation of capa action between some Dipteran species suggests that capa's role in desiccation tolerance may not be confined to D. melanogaster.


Assuntos
Proteínas de Drosophila/metabolismo , Neuropeptídeos/metabolismo , Animais , Cálcio/metabolismo , GMP Cíclico/metabolismo , Drosophila melanogaster , Túbulos de Malpighi/metabolismo , Transdução de Sinais/fisiologia
14.
Proc Biol Sci ; 280(1757): 20122943, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23446525

RESUMO

Insect osmoregulation is subject to highly sophisticated endocrine control. In Drosophila, both Drosophila kinin and tyramine act on the Malpighian (renal) tubule stellate cell to activate chloride shunt conductance, and so increase the fluid production rate. Drosophila kinin is known to act through intracellular calcium, but the mode of action of tyramine is not known. Here, we used a transgenically encoded GFP::apoaequorin translational fusion, targeted to either principal or stellate cells under GAL4/UAS control, to demonstrate that tyramine indeed acts to raise calcium in stellate, but not principal cells. Furthermore, the EC(50) tyramine concentration for half-maximal activation of the intracellular calcium signal is the same as that calculated from previously published data on tyramine-induced increase in chloride flux. In addition, tyramine signalling to calcium is markedly reduced in mutants of NorpA (a phospholipase C) and itpr, the inositol trisphosphate receptor gene, which we have previously shown to be necessary for Drosophila kinin signalling. Therefore, tyramine and Drosophila kinin signals converge on phospholipase C, and thence on intracellular calcium; and both act to increase chloride shunt conductance by signalling through itpr. To test this model, we co-applied tyramine and Drosophila kinin, and showed that the calcium signals were neither additive nor synergistic. The two signalling pathways thus represent parallel, independent mechanisms for distinct tissues (nervous and epithelial) to control the same aspect of renal function.


Assuntos
Sinalização do Cálcio , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/metabolismo , Modelos Biológicos , Neuropeptídeos/fisiologia , Equorina/genética , Equorina/metabolismo , Animais , Apoproteínas/genética , Apoproteínas/metabolismo , Cloretos/metabolismo , Proteínas de Drosophila/análise , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Proteínas de Fluorescência Verde/análise , Receptores de Inositol 1,4,5-Trifosfato/genética , Túbulos de Malpighi/citologia , Túbulos de Malpighi/metabolismo , Neuropeptídeos/análise , Neuropeptídeos/metabolismo , Fosfolipase C beta/genética , Engenharia de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiramina/análise , Tiramina/metabolismo , Tiramina/fisiologia , Equilíbrio Hidroeletrolítico/fisiologia
15.
J Cell Sci ; 126(Pt 3): 778-88, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23264735

RESUMO

Cyclic AMP (cAMP) is a ubiquitous second messenger that regulates a variety of essential processes in diverse cell types, functioning via cAMP-dependent effectors such as protein kinase A (PKA) and/or exchange proteins directly activated by cAMP (EPAC). In an intact tissue it is difficult to separate the contribution of each cAMP effector in a particular cell type using genetic or pharmacological approaches alone. We, therefore, utilized optogenetics to overcome the difficulties associated with examining a multicellular tissue. The transgenic photoactive adenylyl cyclase bPAC can be activated to rapidly and reversibly generate cAMP pulses in a cell-type-specific manner. This optogenetic approach to cAMP manipulation was validated in vivo using GAL4-driven UAS-bPAC in a simple epithelium, the Drosophila renal (Malpighian) tubules. As bPAC was expressed under the control of cell-type-specific promoters, each cAMP signal could be directed to either the stellate or principal cells, the two major cell types of the Drosophila renal tubule. By combining the bPAC transgene with genetic and pharmacological manipulation of either PKA or EPAC it was possible to investigate the functional impact of PKA and EPAC independently of each other. The results of this investigation suggest that both PKA and EPAC are involved in cAMP sensing, but are engaged in very different downstream physiological functions in each cell type: PKA is necessary for basal secretion in principal cells only, and for stimulated fluid secretion in stellate cells only. By contrast, EPAC is important in stimulated fluid secretion in both cell types. We propose that such optogenetic control of cellular cAMP levels can be applied to other systems, for example the heart or the central nervous system, to investigate the physiological impact of cAMP-dependent signaling pathways with unprecedented precision.


Assuntos
Adenilil Ciclases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/fisiologia , Células Epiteliais/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Túbulos de Malpighi/fisiologia , Adenilil Ciclases/genética , Animais , Animais Geneticamente Modificados , Comunicação Celular , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Túbulos de Malpighi/metabolismo , Optogenética , Especificidade de Órgãos , Transdução de Sinais
16.
Am J Physiol Renal Physiol ; 303(11): F1555-62, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22993075

RESUMO

Nephrolithiasis is a major public health problem with a complex and varied etiology. Most stones are composed of calcium oxalate (CaOx), with dietary excess a risk factor. Because of complexity of mammalian system, the details of stone formation remain to be understood. Here we have developed a nephrolithiasis model using the genetic model Drosophila melanogaster, which has a simple, transparent kidney tubule. Drosophilia reliably develops CaOx stones upon dietary oxalate supplementation, and the nucleation and growth of microliths can be viewed in real time. The Slc26 anion transporter dPrestin (Slc26a5/6) is strongly expressed in Drosophilia kidney, and biophysical analysis shows that it is a potent oxalate transporter. When dPrestin is knocked down by RNAi in fly kidney, formation of microliths is reduced, identifying dPrestin as a key player in oxalate excretion. CaOx stone formation is an ancient conserved process across >400 My of divergent evolution (fly and human), and from this study we can conclude that the fly is a good genetic model of nephrolithiasis.


Assuntos
Drosophila/genética , Modelos Animais , Modelos Genéticos , Nefrolitíase/genética , Animais , Animais Geneticamente Modificados , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Oxalato de Cálcio/metabolismo , Técnicas de Silenciamento de Genes , Túbulos Renais/metabolismo , Nefrolitíase/metabolismo
17.
J Insect Physiol ; 58(4): 563-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22321763

RESUMO

The gut and Malpighian tubules of insects are the primary sites of active solute and water transport for controlling hemolymph and urine composition, pH, and osmolarity. These processes depend on ATPase (pumps), channels and solute carriers (Slc proteins). Maturation of genomic databases enables us to identify the putative molecular players for these processes. Anion transporters of the Slc4 family, AE1 and NDAE1, have been reported as HCO(3)(-) transporters, but are only part of the story. Here we report Dipteran (Drosophila melanogaster (d) and Anopheles gambiae (Ag)) anion exchangers, belonging to the Slc26 family, which are multi-functional anion exchangers. One Drosophila and two Ag homologues of mammalian Slc26a5 (Prestin) and Slc26a6 (aka, PAT1, CFEX) were identified and designated dPrestin, AgPrestinA and AgPrestinB. dPrestin and AgPrestinB show electrogenic anion exchange (Cl(-)/nHCO(3)(-), Cl(-)/SO(4)(2-) and Cl(-)/oxalate(2-)) in an oocyte expression system. Since these transporters are the only Dipteran Slc26 proteins whose transport is similar to mammalian Slc26a6, we submit that Dipteran Prestin are functional and even molecular orthologues of mammalian Slc26a6. OSR1 kinase increases dPrestin ion transport, implying another set of physiological processes controlled by WNK/SPAK signaling in epithelia. All of these mRNAs are highly expressed in the gut and Malpighian tubules. Dipteran Prestin proteins appear suited for central roles in bicarbonate, sulfate and oxalate metabolism including generating the high pH conditions measured in the Dipteran midgut lumen. Finally, we present and discuss Drosophila genetic models that integrate these processes.


Assuntos
Anopheles/metabolismo , Antiportadores de Cloreto-Bicarbonato/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Animais , Anopheles/genética , Antiportadores de Cloreto-Bicarbonato/genética , Drosophila/genética , Proteínas de Drosophila/genética , Transporte de Íons , Filogenia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Xenopus
18.
J Insect Physiol ; 58(4): 488-97, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22306292

RESUMO

The success of insects is in large part due to their ability to survive environmental stress, including heat, cold, and dehydration. Insects are also exposed to infection, osmotic or oxidative stress, and to xenobiotics or toxins. The molecular mechanisms of stress sensing and response have been widely investigated in mammalian cell lines, and the area of stress research is now so vast to be beyond the scope of a single review article. However, the mechanisms by which stress inputs to the organism are sensed and integrated at the tissue and cellular level are less well understood. Increasingly, common molecular events between immune and other stress responses are observed in vivo; and much of this work stems of efforts in insect molecular science and physiology. We describe here the current knowledge in the area of immune and stress signalling and response at the level of the organism, tissue and cell, focussing on a key epithelial tissue in insects, the Malpighian tubule, and drawing together the known pathways that modulate responses to different stress insults. The tubules are critical for insect survival and are increasingly implicated in responses to multiple and distinct stress inputs. Importantly, as tubule function is central to survival, they are potentially key targets for insect control, which will be facilitated by increased understanding of the complexities of stress signalling in the organism.


Assuntos
Drosophila/metabolismo , Imunidade Inata , Túbulos de Malpighi/metabolismo , Estresse Oxidativo , Receptor Cross-Talk , Animais , GMP Cíclico/metabolismo , Drosophila/imunologia , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica , Guanilato Ciclase/metabolismo , Mitocôndrias/metabolismo , Salinidade , Transdução de Sinais
19.
PLoS One ; 7(1): e29897, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22253819

RESUMO

The capa peptide receptor, capaR (CG14575), is a G-protein coupled receptor (GPCR) for the D. melanogaster capa neuropeptides, Drm-capa-1 and -2 (capa-1 and -2). To date, the capa peptide family constitutes the only known nitridergic peptides in insects, so the mechanisms and physiological function of ligand-receptor signalling of this peptide family are of interest. Capa peptide induces calcium signaling via capaR with EC50 values for capa-1 = 3.06 nM and capa-2 = 4.32 nM. capaR undergoes rapid desensitization, with internalization via a b-arrestin-2 mediated mechanism but is rapidly re-sensitized in the absence of capa-1. Drosophila capa peptides have a C-terminal -FPRXamide motif and insect-PRXamide peptides are evolutionarily related to vertebrate peptide neuromedinU (NMU). Potential agonist effects of human NMU-25 and the insect -PRLamides [Drosophila pyrokinins Drm-PK-1 (capa-3), Drm-PK-2 and hugin-gamma [hugg]] against capaR were investigated. NMU-25, but not hugg nor Drm-PK-2, increases intracellular calcium ([Ca²âº]i) levels via capaR. In vivo, NMU-25 increases [Ca²âº]i and fluid transport by the Drosophila Malpighian (renal) tubule. Ectopic expression of human NMU receptor 2 in tubules of transgenic flies results in increased [Ca²âº]i and fluid transport. Finally, anti-porcine NMU-8 staining of larval CNS shows that the most highly immunoreactive cells are capa-producing neurons. These structural and functional data suggest that vertebrate NMU is a putative functional homolog of Drm-capa-1 and -2. capaR is almost exclusively expressed in tubule principal cells; cell-specific targeted capaR RNAi significantly reduces capa-1 stimulated [Ca²âº]i and fluid transport. Adult capaR RNAi transgenic flies also display resistance to desiccation. Thus, capaR acts in the key fluid-transporting tissue to regulate responses to desiccation stress in the fly.


Assuntos
Dessecação , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neurotransmissores/química , Homologia de Sequência de Aminoácidos , Estresse Fisiológico , Equorina/metabolismo , Sequência de Aminoácidos , Animais , Apoproteínas/metabolismo , Sinalização do Cálcio , Proteínas de Drosophila/química , Drosophila melanogaster/citologia , Endocitose , Técnicas de Silenciamento de Genes , Humanos , Imuno-Histoquímica , Túbulos de Malpighi/metabolismo , Dados de Sequência Molecular , Neuropeptídeos/química , Neuropeptídeos/metabolismo , Receptores Acoplados a Proteínas G/química
20.
Peptides ; 34(1): 209-18, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21893139

RESUMO

Receptorguanylate cyclases (rGCs) modulate diverse physiological processes including mammalian cardiovascular function and insect eclosion. The Drosophila genome encodes several receptor and receptor-like GCs, but no ligand for any Drosophila rGC has yet been identified. By screening peptide libraries in Drosophila S2 cells, the Drosophila peptide NPLP1-VQQ (NLGALKSSPVHGVQQ) was shown to be a ligand for the rGC, Gyc76C (CG42636, previously CG8742, l(3)76BDl, DrGC-1). In the adult fly, expression of Gyc76C is highest in immune and stress-sensing epithelial tissues, including Malpighian tubules and midgut; and NPLP1-VQQ stimulates fluid transport and increases cGMP content in tubules. cGMP signaling is known to modulate the activity of the IMD innate immune pathway in tubules via activation and nuclear translocation of the NF-kB orthologue, Relish, resulting in increased anti-microbial peptide (AMP) gene expression; and so NPLP1-VQQ might act in immune/stress responses. Indeed, NPLP1-VQQ induces nuclear translocation of Relish in intact tubules and increases expression of the anti-microbial peptide gene, diptericin. Targeted Gyc76C RNAi to tubule principal cells inhibited both NPLP1-VQQ-induced Relish translocation and diptericin expression. Relish translocation and increased AMP gene expression also occurs in tubules in response to dietary salt stress. Gyc76C also modulates organismal survival to salt stress - ablation of Gyc76C expression in only tubule principal cells prevents Relish translocation, reduces diptericin expression, and reduces organismal survival in response to salt stress. Thus, the principal-cell localized NPLP1-VQQ/Gyc76C cGMP pathway acts to signal environmental (salt) stress to the whole organism.


Assuntos
Proteínas de Drosophila/metabolismo , Guanilato Ciclase/metabolismo , Imunidade Inata/efeitos dos fármacos , Neuropeptídeos/metabolismo , Cloreto de Sódio/farmacologia , Sequência de Aminoácidos , Animais , Drosophila , Proteínas de Drosophila/genética , Guanilato Ciclase/genética , Imunidade Inata/genética , Dados de Sequência Molecular , Neuropeptídeos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...