Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 30(20): 3908-3922.e4, 2020 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-32795444

RESUMO

Bacteria come in an array of shapes and sizes, but the mechanisms underlying diverse morphologies are poorly understood. The peptidoglycan (PG) cell wall is the primary determinant of cell shape. At the molecular level, morphological variation often results from the regulation of enzymes involved in cell elongation and division. These enzymes are spatially controlled by cytoskeletal scaffolding proteins, which both recruit and organize the PG synthesis complex. How then do cells define alternative morphogenic processes that are distinct from cell elongation and division? To address this, we have turned to the specific morphotype of Alphaproteobacterial stalks. Stalk synthesis is a specialized form of zonal growth, which requires PG synthesis in a spatially constrained zone to extend a thin cylindrical projection of the cell envelope. The morphogen SpmX defines the site of stalk PG synthesis, but SpmX is a PG hydrolase. How then does a non-cytoskeletal protein, SpmX, define and constrain PG synthesis to form stalks? Here, we report that SpmX and the bactofilin BacA act in concert to regulate stalk synthesis in Asticcacaulis biprosthecum. We show that SpmX recruits BacA to the site of stalk synthesis. BacA then serves as a stalk-specific topological organizer for PG synthesis activity, including its recruiter SpmX, at the base of the stalk. In the absence of BacA, cells produce "pseudostalks" that are the result of unconstrained PG synthesis. Therefore, the protein responsible for recruitment of a morphogenic PG remodeling complex, SpmX, is distinct from the protein that topologically organizes the complex, BacA.


Assuntos
Caulobacteraceae/metabolismo , Crescimento Celular , N-Acetil-Muramil-L-Alanina Amidase/metabolismo , Peptidoglicano/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Caulobacteraceae/genética , Divisão Celular , Parede Celular/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/genética , Monoéster Fosfórico Hidrolases/genética
2.
Trends Microbiol ; 26(3): 191-208, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29056293

RESUMO

Bacteria come in a wide variety of shapes and sizes. The true picture of bacterial morphological diversity is likely skewed due to an experimental focus on pathogens and industrially relevant organisms. Indeed, most of the work elucidating the genes and molecular processes involved in maintaining bacterial morphology has been limited to rod- or coccal-shaped model systems. The mechanisms of shape evolution, the molecular processes underlying diverse shapes and growth modes, and how individual cells can dynamically modulate their shape are just beginning to be revealed. Here we discuss recent work aimed at advancing our knowledge of shape diversity and uncovering the molecular basis for shape generation in noncanonical and morphologically complex bacteria.


Assuntos
Bactérias/citologia , Fenômenos Fisiológicos Bacterianos , Modelos Biológicos , Evolução Biológica , Plasticidade Celular , Parede Celular/fisiologia , Peptidoglicano/metabolismo , Especificidade da Espécie
3.
PLoS Biol ; 14(10): e1002565, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27695035

RESUMO

The modern age of metagenomics has delivered unprecedented volumes of data describing the genetic and metabolic diversity of bacterial communities, but it has failed to provide information about coincident cellular morphologies. Much like metabolic and biosynthetic capabilities, morphology comprises a critical component of bacterial fitness, molded by natural selection into the many elaborate shapes observed across the bacterial domain. In this essay, we discuss the diversity of bacterial morphology and its implications for understanding both the mechanistic and the adaptive basis of morphogenesis. We consider how best to leverage genomic data and recent experimental developments in order to advance our understanding of bacterial shape and its functional importance.


Assuntos
Adaptação Fisiológica , Bactérias/genética , Morfogênese , Bactérias/classificação , Evolução Molecular , Seleção Genética
4.
Bioessays ; 37(4): 413-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25664446

RESUMO

How Darwin's "endless forms most beautiful" have evolved remains one of the most exciting questions in biology. The significant variety of bacterial shapes is most likely due to the specific advantages they confer with respect to the diverse environments they occupy. While our understanding of the mechanisms generating relatively simple shapes has improved tremendously in the last few years, the molecular mechanisms underlying the generation of complex shapes and the evolution of shape diversity are largely unknown. The emerging field of bacterial evolutionary cell biology provides a novel strategy to answer this question in a comparative phylogenetic framework. This relatively novel approach provides hypotheses and insights into cell biological mechanisms, such as morphogenesis, and their evolution that would have been difficult to obtain by studying only model organisms. We discuss the necessary steps, challenges, and impact of integrating "evolutionary thinking" into bacterial cell biology in the genomic era.


Assuntos
Bactérias/citologia , Fenômenos Fisiológicos Bacterianos , Evolução Biológica , Biologia Celular , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA