Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
1.
Genome Res ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38977307

RESUMO

The zoonotic parasite Cryptosporidium parvum is a global cause of gastrointestinal disease in humans and ruminants. Sequence analysis of the highly polymorphic gp60 gene enabled the classification of C. parvum isolates into multiple groups (e.g., IIa, IIc, Id) and a large number of subtypes. In Europe, subtype IIaA15G2R1 is largely predominant and has been associated with many water- and food-borne outbreaks. In this study, we generated new whole-genome sequence (WGS) data from 123 human- and ruminant-derived isolates collected in 13 European countries and included other available WGS data from Europe, Egypt, China, and the United States (n = 72) in the largest comparative genomics study to date. We applied rigorous filters to exclude mixed infections and analyzed a data set from 141 isolates from the zoonotic groups IIa (n = 119) and IId (n = 22). Based on 28,047 high-quality, biallelic genomic SNPs, we identified three distinct and strongly supported populations: Isolates from China (IId) and Egypt (IIa and IId) formed population 1; a minority of European isolates (IIa and IId) formed population 2; and the majority of European (IIa, including all IIaA15G2R1 isolates) and all isolates from the United States (IIa) clustered in population 3. Based on analyses of the population structure, population genetics, and recombination, we show that population 3 has recently emerged and expanded throughout Europe to then, possibly from the United Kingdom, reach the United States, where it also expanded. The reason(s) for the successful spread of population 3 remain elusive, although genes under selective pressure uniquely in this population were identified.

2.
Cell ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38981480

RESUMO

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.

3.
Water Res ; 258: 121788, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38810599

RESUMO

While waters might be contaminated by oocysts from >40 Cryptosporidium species, only viable oocysts of C. parvum and C. hominis truly pose the main health risk to the immunocompetent population. Oocyst viability is also an important but often neglected risk factor in monitoring waterborne parasites. However, commonly used methods in water monitoring and surveys cannot distinguish species (microscopic observation) or oocyst viability (PCR), as dead oocysts in water could retain gross structure and DNA content for weeks to months. Here, we report new TaqMan qRT-PCR/qPCR assays for quantitative detection of viable C. parvum and C. hominis oocysts. By targeting a hypothetical protein-encoding gene cgd6_3920 that is highly expressed in oocysts and variable between species, the qRT-PCR/qPCR assays achieve excellent analytical specificity and sensitivity (limit of quantification [LOQ] = 0.25 and 1.0 oocyst/reaction). Using calibration curves, the number and ratio of viable oocysts in specimens could be calculated. Additionally, we also establish a TaqMan-18S qPCR for cost-effective screening of pan-Cryptosporidium-positive specimens (LOQ = 0.1 oocyst/reaction). The assay feasibility is validated using field water (N = 43) and soil (79) specimens from 17 locations in Changchun, China, which detects four Cryptosporidium species from seven locations, including three gp60-subtypes (i.e., IIdA19G1, IIdA17G1 and IIdA24G2) of C. parvum oocysts showing varied viability ratios. These new TaqMan q(RT)-PCR assays supplement current methods in the survey of waters and other samples (e.g., surfaces, foods and beverages), and are applicable to assessing the efficiency of oocyst deactivation protocols.


Assuntos
Cryptosporidium parvum , Cryptosporidium , Oocistos , Cryptosporidium/genética , Fatores de Risco , Saúde Pública , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
Int J Parasitol ; 54(5): 233-245, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38246405

RESUMO

The cestode Echinococcus multilocularis is the causative agent of alveolar echinococcosis, a fatal zoonotic parasitic disease of the northern hemisphere. Red foxes are the main reservoir hosts and, likely, the main drivers of the geographic spread of the disease in Europe. Knowledge of genetic relationships among E. multilocularis isolates at a European scale is key to understanding the dispersal characteristics of E. multilocularis. Hence, the present study aimed to describe the genetic diversity of E. multilocularis isolates obtained from different host species in 19 European countries. Based on the analysis of complete nucleotide sequences of the cob, atp6, nad2, nad1 and cox1 mitochondrial genes (4,968 bp), 43 haplotypes were inferred. Four haplotypes represented 62.56 % of the examined isolates (142/227), and one of these four haplotypes was found in each country investigated, except Svalbard, Norway. While the haplotypes from Svalbard were markedly different from all the others, mainland Europe appeared to be dominated by two main clusters, represented by most western, central and eastern European countries, and the Baltic countries and northeastern Poland, respectively. Moreover, one Asian-like haplotype was identified in Latvia and northeastern Poland. To better elucidate the presence of Asian genetic variants of E. multilocularis in Europe, and to obtain a more comprehensive Europe-wide coverage, further studies, including samples from endemic regions not investigated in the present study, especially some eastern European countries, are needed. Further, the present work proposes historical causes that may have contributed to shaping the current genetic variability of E. multilocularis in Europe.


Assuntos
Equinococose , Echinococcus multilocularis , Animais , Echinococcus multilocularis/genética , Filogenia , Equinococose/epidemiologia , Equinococose/veterinária , Equinococose/parasitologia , Europa (Continente)/epidemiologia , Zoonoses , Raposas/parasitologia , Variação Genética
5.
Microb Genom ; 9(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37489877

RESUMO

The Inter European Union Reference Laboratories (EURLs) Working Group on Next Generation Sequencing (NGS) involves eight EURLs for microbiological food and feed hazards and has been working since 2017 to promote the adoption of NGS by the National Reference Laboratories (NRLs) in the European Union. This work illustrates the results of the first 5 years of activity. By working together, the EURLs involved have released guidance documents for assisting NRLs in all the steps of NGS, helping the transition from classical molecular methods towards whole genome sequencing while ensuring harmonization, with the final aim of improving preparedness in the use of NGS to characterize microbial hazards and trace the sources of infection.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Laboratórios , União Europeia , Europa (Continente) , Sequenciamento Completo do Genoma
6.
Microb Genom ; 9(3)2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36976254

RESUMO

Giardia duodenalis (syn. G. intestinalis, G. lamblia) is a widespread gastrointestinal protozoan parasite with debated taxonomic status. Currently, eight distinct genetic sub-groups, termed assemblages A-H, are defined based on a few genetic markers. Assemblages A and B may represent distinct species and are both of human public health relevance. Genomic studies are scarce and the few reference genomes available, in particular for assemblage B, are insufficient for adequate comparative genomics. Here, by combining long- and short-read sequences generated by PacBio and Illumina sequencing technologies, we provide nine annotated genome sequences for reference from new clinical isolates (four assemblage A and five assemblage B parasite isolates). Isolates chosen represent the currently accepted classification of sub-assemblages AI, AII, BIII and BIV. Synteny over the whole genome was generally high, but we report chromosome-level translocations as a feature that distinguishes assemblage A from B parasites. Orthologue gene group analysis was used to define gene content differences between assemblage A and B and to contribute a gene-set-based operational definition of respective taxonomic units. Giardia is tetraploid, and high allelic sequence heterogeneity (ASH) for assemblage B vs. assemblage A has been observed so far. Noteworthy, here we report an extremely low ASH (0.002%) for one of the assemblage B isolates (a value even lower than the reference assemblage A isolate WB-C6). This challenges the view of low ASH being a notable feature that distinguishes assemblage A from B parasites, and low ASH allowed assembly of the most contiguous assemblage B genome currently available for reference. In conclusion, the description of nine highly contiguous genome assemblies of new isolates of G. duodenalis assemblage A and B adds to our understanding of the genomics and species population structure of this widespread zoonotic parasite.


Assuntos
Giardia lamblia , Giardíase , Humanos , Giardia lamblia/genética , Giardíase/parasitologia , Giardia/genética , Genômica
7.
Mol Ecol ; 32(10): 2633-2645, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-35652748

RESUMO

Cryptosporidium parvum is a globally distributed zoonotic pathogen and a major cause of diarrhoeal disease in humans and ruminants. The parasite's life cycle comprises an obligatory sexual phase, during which genetic exchanges can occur between previously isolated lineages. Here, we compare 32 whole genome sequences from human- and ruminant-derived parasite isolates collected across Europe, Egypt and China. We identify three strongly supported clusters that comprise a mix of isolates from different host species, geographic origins, and subtypes. We show that: (1) recombination occurs between ruminant isolates into human isolates; (2) these recombinant regions can be passed on to other human subtypes through gene flow and population admixture; (3) there have been multiple genetic exchanges, and most are probably recent; (4) putative virulence genes are significantly enriched within these genetic exchanges, and (5) this results in an increase in their nucleotide diversity. We carefully dissect the phylogenetic sequence of two genetic exchanges, illustrating the long-term evolutionary consequences of these events. Our results suggest that increased globalization and close human-animal contacts increase the opportunity for genetic exchanges between previously isolated parasite lineages, resulting in spillover and spillback events. We discuss how this can provide a novel substrate for natural selection at genes involved in host-parasite interactions, thereby potentially altering the dynamic coevolutionary equilibrium in the Red Queens arms race.


Assuntos
Criptosporidiose , Cryptosporidium parvum , Cryptosporidium , Animais , Humanos , Cryptosporidium parvum/genética , Criptosporidiose/parasitologia , Cryptosporidium/genética , Filogenia , Ruminantes
8.
Parasit Vectors ; 15(1): 489, 2022 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-36572928

RESUMO

BACKGROUND: The flagellated parasite Giardia duodenalis is a major and global cause of diarrhoeal disease. Eight genetically very distinct groups, known as assemblages A to H, have been recognized in the G. duodenalis species complex, two of which (assemblages A and B) infect humans and other mammalian hosts. Informative typing schemes are essential to understand transmission pathways, characterize outbreaks and trace zoonotic transmission. In this study, we evaluated a published multi-locus sequence typing (MLST) scheme for G. duodenalis assemblage A, which is based on six polymorphic markers. METHODS: We genotyped 60 human-derived and 11 animal-derived G. duodenalis isolates collected in Europe and on other continents based on the published protocol. After retrieving previously published genotyping data and excluding isolates whose sequences showed allelic sequence heterozygosity, we analysed a dataset comprising 146 isolates. RESULTS: We identified novel variants at five of the six markers and identified 78 distinct MLST types in the overall dataset. Phylogenetic interpretation of typing data confirmed that sub-assemblage AII only comprises human-derived isolates, whereas sub-assemblage AI comprises all animal-derived isolates and a few human-derived isolates, suggesting limited zoonotic transmission. Within sub-assemblage AII, isolates from two outbreaks, which occurred in Sweden and Italy, respectively, had unique and distinct MLST types. Population genetic analysis showed a lack of clustering by geographical origin of the isolates. CONCLUSION: The MLST scheme evaluated provides sufficient discriminatory power for epidemiological studies of G. duodenalis assemblage A.


Assuntos
Giardia lamblia , Giardíase , Animais , Humanos , Giardíase/parasitologia , Tipagem de Sequências Multilocus , Filogenia , Genótipo , Fezes/parasitologia , Mamíferos/genética
9.
Mol Biol Evol ; 39(9)2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-36103257

RESUMO

Large-scale comparative genomics- and population genetic studies generate enormous amounts of polymorphism data in the form of DNA variants. Ultimately, the goal of many of these studies is to associate genetic variants to phenotypes or fitness. We introduce VIVID, an interactive, user-friendly web application that integrates a wide range of approaches for encoding genotypic to phenotypic information in any organism or disease, from an individual or population, in three-dimensional (3D) space. It allows mutation mapping and annotation, calculation of interactions and conservation scores, prediction of harmful effects, analysis of diversity and selection, and 3D visualization of genotypic information encoded in Variant Call Format on AlphaFold2 protein models. VIVID enables the rapid assessment of genes of interest in the study of adaptive evolution and the genetic load, and it helps prioritizing targets for experimental validation. We demonstrate the utility of VIVID by exploring the evolutionary genetics of the parasitic protist Plasmodium falciparum, revealing geographic variation in the signature of balancing selection in potential targets of functional antibodies.


Assuntos
Genômica , Software , Genômica/métodos , Genótipo , Fenótipo , Polimorfismo Genético
10.
Euro Surveill ; 27(35)2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36052722

RESUMO

Cryptosporidium is a leading global cause of waterborne disease, with many reported outbreaks related to main water supplies. In August 2019, an outbreak of cryptosporidiosis involving 80 cases occurred among 114 vacationers in a small municipality located in the Tuscan-Emilian Apennines, north-eastern Italy. After excluding a potential food-borne outbreak, the epidemiological investigation focussed on the hypothesis of a waterborne outbreak. This was confirmed by the finding of Cryptosporidium oocysts in stools of the cases and in water samples from the municipal water network. Molecular characterisation revealed the zoonotic species Cryptosporidium parvum as the causative agent. A single subtype (IIdA25G1) was found among all cases, and in one of two positive water samples. The municipality's water supply used spring water that only received a disinfection treatment insufficient to inactivate the parasite. Possible entry means into the water mains were found through further environmental investigations. As these types of water supplies are particularly vulnerable to various environmental factors, a control system based on the risk assessment of each phase of the water supply chain is required to guarantee water safety. Effective methods for detection of protozoan pathogens, which are generally excluded from routine water supply analysis, should be applied.


Assuntos
Criptosporidiose , Cryptosporidium , Água Potável , Criptosporidiose/diagnóstico , Criptosporidiose/epidemiologia , Criptosporidiose/parasitologia , Cryptosporidium/genética , Surtos de Doenças , Humanos , Abastecimento de Água
11.
Parasit Vectors ; 15(1): 304, 2022 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-36031635

RESUMO

BACKGROUND: The aim of this study was to identify local transmission patterns of Cryptosporidium spp. infections among livestock and humans in four extremely rural and remote highland communities in Madagascar. METHODS: In this cross-sectional study, households were randomly sampled throughout a 1-year study period, with one feces sample collected from each child (≤ 5 years old), sheep and cattle. Cryptosporidium spp. were identified using a nested PCR assay targeting the 18S ribosomal RNA gene. All samples positive for Cryptosporidium hominis were further subtyped by sequencing the 60-kDa glycoprotein gene (gp60). Spatial clustering methods were applied to analyze potential transmission patterns. RESULTS: In total, 252 households participated in the study, and samples from 197 children, 862 cattle and 334 sheep were collected and included in the study. Of the samples collected, 11 (5.6%) from children, 30 (3.5%) from cattle and 42 (12.6%) from sheep tested positive for Cryptosporidium spp. Very little overlap in the species distribution between human and animal infections was found. Global (overall) and local (spatially defined) clustering was observed for Cryptosporidium spp. infections in sheep and for Cryptosporidium xiaoi/bovis infections among sheep and cattle. DISCUSSION: The results of this analysis do not support the occurrence of defined disease outbreaks, rather they point to a continuous series of transmission events that are spatially aggregated. Despite the close coexistence between humans, sheep and cattle in the study area, mutual transmission was not observed. Hence, the study underlines the importance of sustained sanitation and hygiene measures to prevent cryptosporidiosis transmission among infants, since asymptomatic children serve as an infection reservoir. Similarly, the study highlights the importance of improving hygiene to reduce the transmission of Cryptosporidium spp. in livestock, an infection with serious consequences, especially in newborn calves.


Assuntos
Doenças dos Bovinos , Criptosporidiose , Cryptosporidium , Animais , Bovinos , Pré-Escolar , Análise por Conglomerados , Estudos Transversais , Fezes , Genótipo , Humanos , Lactente , Gado , Madagáscar , Prevalência , Ovinos
12.
Mol Biol Evol ; 39(4)2022 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-35302613

RESUMO

Cryptosporidiosis is a major global health problem and a primary cause of diarrhea, particularly in young children in low- and middle-income countries (LMICs). The zoonotic Cryptosporidium parvum and anthroponotic Cryptosporidium hominis cause most human infections. Here, we present a comprehensive whole-genome study of C. hominis, comprising 114 isolates from 16 countries within five continents. We detect two lineages with distinct biology and demography, which diverged circa 500 years ago. We consider these lineages two subspecies and propose the names C. hominis hominis and C. hominis aquapotentis (gp60 subtype IbA10G2). In our study, C. h. hominis is almost exclusively represented by isolates from LMICs in Africa and Asia and appears to have undergone recent population contraction. In contrast, C. h. aquapotentis was found in high-income countries, mainly in Europe, North America, and Oceania, and appears to be expanding. Notably, C. h. aquapotentis is associated with high rates of direct human-to-human transmission, which may explain its success in countries with well-developed environmental sanitation infrastructure. Intriguingly, we detected genomic regions of introgression following secondary contact between the subspecies. This resulted in high diversity and divergence in genomic islands of putative virulence genes, including muc5 (CHUDEA2_430) and a hypothetical protein (CHUDEA6_5270). This diversity is maintained by balancing selection, suggesting a co-evolutionary arms race with the host. Finally, we find that recent gene flow from C. h. aquapotentis to C. h. hominis, likely associated with increased human migration, maybe driving the evolution of more virulent C. hominis variants.


Assuntos
Criptosporidiose , Cryptosporidium , Criança , Pré-Escolar , Criptosporidiose/epidemiologia , Criptosporidiose/genética , Cryptosporidium/genética , DNA de Protozoário/genética , Genoma , Genótipo , Humanos , Metagenômica
14.
Euro Surveill ; 26(35)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34477055

RESUMO

Giardiasis, the disease caused by the flagellate Giardia duodenalis (syn. G.lamblia, G. intestinalis), is the most commonly reported among the five food- and waterborne parasitic diseases under mandatory surveillance in 24 EU countries. From November 2018 to April 2019, an outbreak of giardiasis occurred in a municipality of the Bologna province, in north-eastern Italy. Microscopy and immunochromatography identified cysts and antigens, respectively, of the parasite in stool samples of 228 individuals. Molecular typing of 136 stool samples revealed a vast predominance (95%) of G. duodenalis assemblage B. Investigations into potential sources indicated tap water as the most likely vehicle of infection, although cysts were not detected in water samples. Control measures mostly aimed at preventing secondary transmission by informing citizens about the outbreak, and by treatment of patients with anti-parasitic drugs. This is the first documented human outbreak of giardiasis in Italy; its investigation has highlighted the difficulties in the timely detection and management of this parasite, which is often overlooked as a cause of human gastroenteritis. The long and variable incubation time, absence of specific symptoms and a general lack of awareness about this pathogen contributed to delay in diagnosis.


Assuntos
Giardia lamblia , Giardíase , Surtos de Doenças , Fezes , Genótipo , Giardia/genética , Giardia lamblia/genética , Giardíase/diagnóstico , Giardíase/epidemiologia , Humanos
15.
Front Microbiol ; 12: 622356, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276576

RESUMO

Parasites often have complex developmental cycles that account for their presence in a variety of difficult-to-analyze matrices, including feces, water, soil, and food. Detection of parasites in these matrices still involves laborious methods. Untargeted sequencing of nucleic acids extracted from those matrices in metagenomic projects may represent an attractive alternative method for unbiased detection of these pathogens. Here, we show how publicly available metagenomic datasets can be mined to detect parasite specific sequences, and generate data useful for environmental surveillance. We use the protozoan parasite Cryptosporidium parvum as a test organism, and show that detection is influenced by the reference sequence chosen. Indeed, the use of the whole genome yields high sensitivity but low specificity, whereas specificity is improved through the use of signature sequences. In conclusion, querying metagenomic datasets for parasites is feasible and relevant, but requires optimization and validation. Nevertheless, this approach provides access to the large, and rapidly increasing, number of datasets from metagenomic and meta-transcriptomic studies, allowing unlocking hitherto idle signals of parasites in our environments.

16.
Artigo em Inglês | MEDLINE | ID: mdl-33978095

RESUMO

In order to provide additional data on the prevalence and genetic diversity of Dientamoeba fragilis in human populations, we conducted a study in children from low-income communities in Sao Paulo State, Brazil. Fecal samples from daycare center attendees up to 6 years old (n=156) and staff members (n=18) were submitted to PCR and sequencing of D. fragilis as well as to microscopic examination for the presence of other intestinal parasites. All children assessed were asymptomatic and 10.3% (16/156) were positive for D. fragilis. No worker was found to be positive. An association between Dientamoeba and coinfection with other intestinal parasites was observed. Concerning the genetic diversity, 14 and only two isolates were genotype 1 and genotype 2, respectively. Our findings outline interesting aspects: (1) asymptomatic children as carriers of Dientamoeba in communities in which environmental conditions ensure parasite transmission and, (2) association between Dientamoeba infection in young children and coinfection with other enteric parasites, reinforcing its transmission via the fecal-oral route.


Assuntos
Dientamebíase , Enteropatias Parasitárias , Brasil/epidemiologia , Criança , Pré-Escolar , Dientamoeba/genética , Dientamebíase/diagnóstico , Dientamebíase/epidemiologia , Fezes , Humanos , Prevalência
17.
Front Vet Sci ; 8: 626424, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842570

RESUMO

A field trial performed in-home conditions was conducted on 24 dogs naturally infected with Giardia, in order to compare the efficacy of fenbendazole and metronidazole. Animals were allocated in groups randomly in order to obtain two groups of 12 dogs each with similar parasitic loads of Giardia cysts: dogs in Group A were treated with fenbendazole (Panacur®, Intervet Italia Srl) administered at the dose of 50 mg/kg orally once a day for 5 consecutive days, dogs in Group B were treated with metronidazole (Flagyl®, Zambon Italia Srl) administered orally at the dose of 50 mg/kg, once a day for 5 consecutive days. All the dogs that were shedding Giardia cysts after the first treatment (Day 0) were retreated (either at Day 7 or at Day 14 or at Day 21) until a negative result was obtained with the same treatment. Additionally, all the dogs were re-examined at Day 50. All the dogs were tested for the presence of Giardia cysts using a fecal flotation method (FLOTAC). The percent efficacy of the treatments (A and B) was calculated at each sampling point (Days 7, 14, 21, and 50) as reduction in mean Giardia cysts. After the first therapy, on day 7, 4/12 (33.3%) dogs tested positive for Giardia cysts in the Group A and 5/12 (41.7%) in the Group B. Efficacies at (Days 7, 14, 21, and 50) of the treatments against Giardia infection were 80.9, 94, 100, and 97% in the Group A and 70.8, 99, 100, and 97.1% in the Group B. Statistically significant differences were not observed between the efficacy of Fenbendazole and Metronidazole against infection by G. duodenalis (P = 0.686). Molecular analysis revealed full homology (i.e., 100% with JN416550) with the canine specific assemblage D in six positive dogs. Different hypotheses might explain the re-appearance of the Giardia cysts in some dogs after treatment, e.g., re-infection from the home environment, the correct medication given by the owners, the diet, as well as treatment failure, but also biological issues related to the intermittent excretion of Giardia cysts.

18.
Animals (Basel) ; 11(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806043

RESUMO

This study reports on the health status of the edible dormouse (Glis glis) living in Nebrodi Park (Sicily, Italy), responsible for nut crop damage in the area. In the frame of a monitoring campaign for potential zoonotic risk involving 30 dormice, rectal and conjunctival swabs and fur and nest content were collected for bacteriological and parasitological examinations, respectively. A large presence of fleas belonging to Monopsyllus sciurorum was found. Necropsy of a dead dormouse revealed an infection of Mesocestoides lineatus, whose cysts were found in the abdomen cavity and on the liver; this is the first report of this in this species. Further studies are necessary to identify their role in the environment, considering the limited knowledge of this species in Italy.

19.
Food Microbiol ; 98: 103792, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33875219

RESUMO

To investigate the presence of Cyclospora cayetanensis, Toxoplasma gondii and Echinococcus spp. in fresh produce sold in Italy, 324 locally produced 'ready-to-eat' (RTE) mixed-salad packages belonging to three brands and 324 berries packages (blueberries and blackberries imported from Peru and Mexico, respectively, and raspberries grown in Italy) were purchased at retail. Nine individual packages from each of the six types of fresh produce were collected monthly for one year, and with the same produce pooled, this resulted in a total of 72 pools for the whole year. Using microscopy (FLOTAC), a Cyclospora-like oocyst was detected in a blueberry sample and a taeniid egg was detected in a RTE-salad sample. Molecular tools confirmed these to be C. cayetanensis and Echinococcus multilocularis, respectively. Toxoplasma gondii was not detected in any of the samples. This study shows for the first time in Europe that imported berries on the Italian market may be contaminated with C. cayetanensis and RTE salads grown in Italy with E. multilocularis. The results indicate a new epidemiological scenario and highlight that current management of fresh produce, locally produced or imported, does not ensure products are free from parasite contamination.


Assuntos
Cyclospora/crescimento & desenvolvimento , Echinococcus multilocularis/crescimento & desenvolvimento , Fast Foods/parasitologia , Contaminação de Alimentos/análise , Frutas/parasitologia , Animais , Mirtilos Azuis (Planta)/parasitologia , Cyclospora/genética , Cyclospora/isolamento & purificação , Echinococcus multilocularis/genética , Echinococcus multilocularis/isolamento & purificação , Itália , México , Oocistos/genética , Oocistos/isolamento & purificação , Rubus/parasitologia , Toxoplasma/genética , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/isolamento & purificação
20.
Microb Genom ; 7(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33355530

RESUMO

Cryptosporidiosis is a major cause of diarrhoeal illness among African children, and is associated with childhood mortality, malnutrition, cognitive development and growth retardation. Cryptosporidium hominis is the dominant pathogen in Africa, and genotyping at the glycoprotein 60 (gp60) gene has revealed a complex distribution of different subtypes across this continent. However, a comprehensive exploration of the metapopulation structure and evolution based on whole-genome data has yet to be performed. Here, we sequenced and analysed the genomes of 26 C. hominis isolates, representing different gp60 subtypes, collected at rural sites in Gabon, Ghana, Madagascar and Tanzania. Phylogenetic and cluster analyses based on single-nucleotide polymorphisms showed that isolates predominantly clustered by their country of origin, irrespective of their gp60 subtype. We found a significant isolation-by-distance signature that shows the importance of local transmission, but we also detected evidence of hybridization between isolates of different geographical regions. We identified 37 outlier genes with exceptionally high nucleotide diversity, and this group is significantly enriched for genes encoding extracellular proteins and signal peptides. Furthermore, these genes are found more often than expected in recombinant regions, and they show a distinct signature of positive or balancing selection. We conclude that: (1) the metapopulation structure of C. hominis can only be accurately captured by whole-genome analyses; (2) local anthroponotic transmission underpins the spread of this pathogen in Africa; (3) hybridization occurs between distinct geographical lineages; and (4) genetic introgression provides novel substrate for positive or balancing selection in genes involved in host-parasite coevolution.


Assuntos
Cryptosporidium/classificação , Polimorfismo de Nucleotídeo Único , Sequenciamento Completo do Genoma/métodos , Adaptação Fisiológica , Cryptosporidium/genética , Gabão , Introgressão Genética , Genoma de Protozoário , Genômica , Gana , Sequenciamento de Nucleotídeos em Larga Escala , Madagáscar , Filogenia , População Rural , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA