Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(2): 023708, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29495824

RESUMO

Correlative fluorescence and atomic force microscopy (AFM) imaging is a highly attractive technique for use in biological imaging, enabling force and mechanical measurements of particular structures whose locations are known due to the specificity of fluorescence imaging. The ability to perform these two measurements simultaneously (rather than consecutively with post-processing correlation) is highly valuable because it would allow the mechanical properties of a structure to be tracked over time as changes in the sample occur. We present an instrument which allows simultaneous AFM and fluorescence imaging by aligning an incident fluorescence excitation beam with an AFM-tip. Alignment was performed by calibrating a 2D galvanometer present in the excitation beam path and using it to reposition the incident beam. Two programs were developed (one manual and one automated) which correlate sample features between the AFM and fluorescence images, calculating the distance required to translate the incident beam towards the AFM-tip. Using this method, we were able to obtain beam-tip alignment (and therefore field-of-view alignment) from an offset of >15 µm to within one micron in two iterations of the program. With the program running alongside data acquisition for real-time feedback between AFM and optical images, this offset was maintained over a time period of several hours. Not only does this eliminate the need to image large areas with both techniques to ensure that fields-of-view overlap, but it also raises the possibility of using this instrument for tip-enhanced fluorescence applications, a technique in which super-resolution images have previously been achieved.

2.
J Phys Chem B ; 115(42): 12028-35, 2011 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-21916445

RESUMO

We study the thiophene-based oligomer poly[2,7-(9,9-bis(2'-ethylhexyl)fluorene)-alt-2,5-terthiophene] (PF3T) in solution and when dispersed at low concentration into a polynorbornene matrix. We find that at high concentration in solution the 0-0 electronic transition observed in fluorescence is suppressed, a result indicative of the formation of weakly coupled H-aggregates. At low concentration in a polymer matrix, emission from both single molecules and molecular aggregates is observed. We find that the fluorescence spectra of most PF3T emitters are composed of a number of relatively narrow emission features, indicating that the emission usually occurs from multiple chromophores. A small number of PF3T molecules are however characterized by single chromophore emission, spectral blinking, and narrowed emission peaks.


Assuntos
Fluorenos/química , Polímeros/química , Tiofenos/química , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...