Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Res Nurs ; 26(2): 219-230, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37830211

RESUMO

BACKGROUND: Alterations in the naturally occurring bacteria of the gut, known as the gastrointestinal (GI) microbiome, may influence GI symptoms in women with breast cancer. OBJECTIVE: This work aims to describe GI symptom occurrence, duration, severity, and distress and measures of the GI microbiome among women with breast cancer receiving chemotherapy compared to age- and sex-matched healthy controls. INTERVENTIONS/METHODS: 22 women with breast cancer receiving chemotherapy and 17 healthy control women provided stool specimens and GI symptom data using the modified Memorial Symptom Assessment Scale (MSAS). The fecal microbiome was profiled by metagenomic sequencing of 16S Ribosomal RNA (rRNA). GI microbiome was compared between groups using alpha-diversity (Observed OTU number and Shannon index), beta-diversity (UniFrac distances), and relative abundance of select genera. RESULTS: GI symptoms with high symptom reports among breast cancer patients included nausea, diarrhea, flatulence, dry mouth, taste change, and poor appetite. Indices of differential abundance (beta diversity) significantly distinguished between breast cancer patients and healthy controls. Unique bacterial features differentiating the 2 groups were Prevotella_9, Akkermansia, Lachnospira, Lachnospiraceae_NK4A136, Lachnoclostridium, and Oscillibacter. CONCLUSIONS: Gut bacteria are associated with GI inflammation and mucus degradation, suggesting the potential role of the GI microbiome in GI symptom burden. Understanding the influence of GI bacteria on gut health and symptoms will help harness the enormous potential of the GI microbiome as a future diagnostic and therapeutic agent to reduce the symptom burden associated with chemotherapy.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Humanos , Feminino , Microbioma Gastrointestinal/genética , Neoplasias da Mama/tratamento farmacológico , Carga de Sintomas , Trato Gastrointestinal/microbiologia , Fezes/microbiologia , Bactérias/genética
2.
Environ Toxicol Pharmacol ; 100: 104149, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37196884

RESUMO

The widespread use of glyphosate, a broad-spectrum herbicide, has resulted in significant human exposure, and recent studies have challenged the notion that glyphosate is safe for humans. Although the link between disease states and glyphosate exposure is increasingly appreciated, the mechanistic links between glyphosate and its toxic effects on human health are poorly understood. Recent studies have suggested that glyphosate may cause toxicity through modulation of the gut microbiome, but evidence for glyphosate-induced gut dysbiosis and its effect on host physiology at doses approximating the U.S. Acceptable Daily Intake (ADI = 1.75 mg/kg body weight) is limited. Here, utilizing shotgun metagenomic sequencing of fecal samples from C57BL/6 J mice, we show that glyphosate exposure at doses approximating the U.S. ADI significantly impacts gut microbiota composition. These gut microbial alterations were associated with effects on gut homeostasis characterized by increased proinflammatory CD4+IL17A+ T cells and Lipocalin-2, a known marker of intestinal inflammation.


Assuntos
Microbioma Gastrointestinal , Herbicidas , Camundongos , Humanos , Animais , Camundongos Endogâmicos C57BL , Herbicidas/toxicidade , Homeostase , Glifosato
3.
Sci Rep ; 13(1): 526, 2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36631533

RESUMO

As geographical location can impact the gut microbiome, it is important to study region-specific microbiome signatures of various diseases. Therefore, we profiled the gut microbiome of breast cancer (BC) patients of the Midwestern region of the United States. The bacterial component of the gut microbiome was profiled utilizing 16S ribosomal RNA sequencing. Additionally, a gene pathway analysis was performed to assess the functional capabilities of the bacterial microbiome. Alpha diversity was not significantly different between BC and healthy controls (HC), however beta diversity revealed distinct clustering between the two groups at the species and genera level. Wilcoxon Rank Sum test revealed modulation of several gut bacteria in BC specifically reduced abundance of those linked with beneficial effects such as Faecalibacterium prausnitzii. Machine learning analysis confirmed the significance of several of the modulated bacteria found by the univariate analysis. The functional analysis showed a decreased abundance of SCFA (propionate) production in BC compared to HC. In conclusion, we observed gut dysbiosis in BC with the depletion of SCFA-producing gut bacteria suggesting their role in the pathobiology of breast cancer. Mechanistic understanding of gut bacterial dysbiosis in breast cancer could lead to refined prevention and treatment.


Assuntos
Neoplasias da Mama , Microbioma Gastrointestinal , Humanos , Estados Unidos/epidemiologia , Feminino , Disbiose/microbiologia , Bactérias/genética , Ácidos Graxos Voláteis , Microbioma Gastrointestinal/genética , Fezes/microbiologia , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/análise
4.
Metabolomics ; 18(11): 84, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289122

RESUMO

INTRODUCTION: Phytoestrogens found in soy, fruits, peanuts, and other legumes, have been identified as metabolites capable of providing beneficial effects in multiple pathological conditions due to their ability to mimic endogenous estrogen. Interestingly, the health-promoting effects of some phytoestrogens, such as isoflavones, are dependent on the presence of specific gut bacteria. Specifically, gut bacteria can metabolize isoflavones into equol, which has a higher affinity for endogenous estrogen receptors compared to dietary isoflavones. We have previously shown that patients with multiple sclerosis (MS), a neuroinflammatory disease, lack gut bacteria that are able to metabolize phytoestrogen. Further, we have validated the importance of both isoflavones and phytoestrogen-metabolizing gut bacteria in disease protection utilizing an animal model of MS. Specifically, we have shown that an isoflavone-rich diet can protect from neuroinflammatory diseases, and that protection was dependent on the ability of gut bacteria to metabolize isoflavones into equol. Additionally, mice on a diet with isoflavones showed an anti-inflammatory response compared to the mice on a diet lacking isoflavones. However, it is unknown how isoflavones and/or equol mediates their protective effects, especially their effects on host metabolite levels. OBJECTIVES: In this study, we utilized untargeted metabolomics to identify metabolites found in plasma that were modulated by the presence of dietary isoflavones. RESULTS: We found that the consumption of isoflavones increased anti-inflammatory monounsaturated fatty acids and beneficial polyunsaturated fatty acids while reducing pro-inflammatory glycerophospholipids, sphingolipids, phenylalanine metabolism, and arachidonic acid derivatives. CONCLUSION: Isoflavone consumption alters the systemic metabolic landscape through concurrent increases in monounsaturated fatty acids and beneficial polyunsaturated fatty acids plus reduction in pro-inflammatory metabolites and pathways. This highlights a potential mechanism by which an isoflavone diet may modulate immune-mediated disease.


Assuntos
Isoflavonas , Animais , Camundongos , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Equol/metabolismo , Fitoestrógenos/metabolismo , Metabolismo dos Lipídeos , Receptores de Estrogênio/metabolismo , Fenilalanina/metabolismo , Metabolômica , Estrogênios , Bactérias/metabolismo , Inflamação/tratamento farmacológico , Ácidos Graxos Monoinsaturados , Esfingolipídeos , Glicerofosfolipídeos , Ácidos Araquidônicos
5.
Gut Microbes ; 14(1): 2127446, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36179318

RESUMO

The etiopathogenesis of multiple sclerosis (MS) is strongly affected by environmental factors such as diet and the gut microbiota. An isoflavone-rich (ISO) diet was previously shown to reduce the severity of MS in the animal model experimental autoimmune encephalomyelitis (EAE). Translation of this concept to clinical trial where dietary isoflavones may be recommended for MS patients will require preliminary evidence that providing the isoflavone-rich diet to people with MS (PwMS) who lack phytoestrogen-metabolizing bacteria has beneficial effects. We have previously shown that the gut microbiota of PwMS resembles the gut microbiota of mice raised under a phytoestrogen-free (phyto-free) diet in that it lacks phytoestrogen-metabolizing bacteria. To investigate the effects of phytoestrogens on the microbiota inflammatory response and EAE disease severity we switched the diet of mice raised under a phyto-free (PF) diet to an isoflavone-rich diet. Microbiota analysis showed that the change in diet from one that is ISO to one that is PF reduces beneficial bacteria such as Bifidobacterium species. In addition we observed functional differences in lipopolysaccharide (LPS) biosynthesis pathways. Moreover LPS extracted from feces of mice fed an ISO diet induced increased production of anti-inflammatory cytokines from bone marrow-derived macrophages relative to fecal-LPS isolated from mice fed a PF diet. Eventually mice whose diet was switched from a PF diet to an ISO diet trended toward reduced EAE severity and mortality. Overall we show that an isoflavone-rich diet specifically modulates LPS biosynthesis of the gut microbiota imparts an anti-inflammatory response and decreases disease severity.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Isoflavonas , Animais , Citocinas/metabolismo , Dieta , Encefalomielite Autoimune Experimental/microbiologia , Inflamação , Isoflavonas/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Fitoestrógenos/farmacologia
6.
Toxicol Sci ; 186(1): 102-117, 2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-34850242

RESUMO

The toxicity of many "inert" ingredients of pesticide formulations, such as safeners, is poorly characterized, despite evidence that humans may be exposed to these chemicals. Analysis of ToxCast data for dichloroacetamide safeners with the ToxPi tool identified benoxacor as the safener with the highest potential for toxicity, especially liver toxicity. Benoxacor was subsequently administered to mice via oral gavage for 3 days at concentrations of 0, 0.5, 5, and 50 mg/kg bodyweight (b.w.). Bodyweight-adjusted liver and testes weights were significantly increased in the 50 mg/kg b.w. group. There were no overt pathologies in either the liver or the intestine. 16S rRNA analysis of the cecal microbiome revealed no effects of benoxacor on α- or ß-diversity; however, changes were observed in the abundance of certain bacteria. RNAseq analysis identified 163 hepatic genes affected by benoxacor exposure. Benoxacor exposure expressed a gene regulation profile similar to dichloroacetic acid and the fungicide sedaxane. Metabolomic analysis identified 9 serum and 15 liver metabolites that were affected by benoxacor exposure, changes that were not significant after correcting for multiple comparisons. The activity of antioxidant enzymes was not altered by benoxacor exposure. In vitro metabolism studies with liver microsomes and cytosol from male mice demonstrated that benoxacor is enantioselectively metabolized by cytochrome P450 enzymes, carboxylesterases, and glutathione S-transferases. These findings suggest that the minor toxic effects of benoxacor may be due to its rapid metabolism to toxic metabolites, such as dichloroacetic acid. This result challenges the assumption that inert ingredients of pesticide formulations are safe.


Assuntos
Microbioma Gastrointestinal , Herbicidas , Animais , Herbicidas/toxicidade , Fígado , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxazinas , RNA Ribossômico 16S
7.
Sci Adv ; 7(28)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34244137

RESUMO

The gut microbiota is a potential environmental factor that influences the development of multiple sclerosis (MS). We and others have demonstrated that patients with MS and healthy individuals have distinct gut microbiomes. However, the pathogenic relevance of these differences remains unclear. Previously, we showed that bacteria that metabolize isoflavones are less abundant in patients with MS, suggesting that isoflavone-metabolizing bacteria might provide protection against MS. Here, using a mouse model of MS, we report that an isoflavone diet provides protection against disease, which is dependent on the presence of isoflavone-metabolizing bacteria and their metabolite equol. Notably, the composition of the gut microbiome in mice fed an isoflavone diet exhibited parallels to healthy human donors, whereas the composition in those fed an isoflavone-free diet exhibited parallels to patients with MS. Collectively, our study provides evidence that dietary-induced gut microbial changes alleviate disease severity and may contribute to MS pathogenesis.


Assuntos
Encefalomielite Autoimune Experimental , Isoflavonas , Esclerose Múltipla , Animais , Bactérias/metabolismo , Dieta , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Isoflavonas/metabolismo , Isoflavonas/farmacologia , Esclerose Múltipla/tratamento farmacológico
8.
Front Neurol ; 11: 150, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32231636

RESUMO

The human body has a large, diverse community of microorganisms which not only coexist with us, but also perform many important physiological functions, including metabolism of dietary compounds that we are unable to process ourselves. Furthermore, these bacterial derived/induced metabolites have the potential to interact and influence not only the local gut environment, but the periphery via interaction with and modulation of cells of the immune and nervous system. This relationship is being further appreciated every day as the gut microbiome is researched as a potential target for immunomodulation. A common feature among inflammatory diseases including relapsing-remitting multiple sclerosis (RRMS) is the presence of gut microbiota dysbiosis when compared to healthy controls. However, the specifics of these microbiota-neuro-immune system interactions remain unclear. Among all factors, diet has emerged as a strongest factor regulating structure and function of gut microbial community. Phytoestrogens are one class of dietary compounds emerging as potentially being of interest in this interaction as numerous studies have identified depletion of phytoestrogen-metabolizing bacteria such as Adlercreutzia, Parabacteroides and Prevotella in RRMS patients. Additionally, phytoestrogens or their metabolites have been reported to show protective effects when compounds are administered in the animal model of MS, Experimental Autoimmune Encephalomyelitis (EAE). In this review, we will illustrate the link between MS and phytoestrogen metabolizing bacteria, characterize the importance of gut bacteria and their mechanisms of action in the production of phytoestrogen metabolites, and discuss what is known about the interactions of specific compounds with cells immune and nervous system. A better understanding of gut bacteria-mediated phytoestrogen metabolism and mechanisms through which these metabolites facilitate their biological actions will help in development of novel therapeutic options for MS as well as other inflammatory diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...