Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(7)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38611073

RESUMO

Managing clinical manifestations of cancer/treatment burden on functional status and quality of life remains paramount across the cancer trajectory, particularly for patients with cachexia who display reduced functional capacity. However, clinically relevant criteria for classifying functional impairment at a single point in time or for classifying meaningful functional changes subsequent to disease and/or treatment progression are lacking. This unmet clinical need remains a major obstacle to the development of therapies for cancer cachexia. This review aims to describe current literature-based evidence for clinically meaningful criteria for (1) functional impairment at a single timepoint between cancer patients with or without cachexia and (2) changes in physical function over time across interventional studies conducted in patients with cancer cachexia. The most common functional assessment in cross-sectional and interventional studies was hand grip strength (HGS). We observed suggestive evidence that an HGS deficit between 3 and 6 kg in cancer cachexia may display clinical relevance. In interventional studies, we observed that long-duration multimodal therapies with a focus on skeletal muscle may benefit HGS in patients with considerable weight loss. Future studies should derive cohort-specific clinically relevant criteria to confirm these observations in addition to other functional outcomes and investigate appropriate patient-reported anchors.

2.
Front Cell Infect Microbiol ; 14: 1297321, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481660

RESUMO

Chagas' is a neglected disease caused by the eukaryotic kinetoplastid parasite, Trypanosoma cruzi. Currently, approximately 8 million people are infected worldwide, most of whom are in the chronic phase of the disease, which involves cardiac, digestive, or neurologic manifestations. There is an urgent need for a vaccine because treatments are only effective in the initial phase of infection, which is generally underdiagnosed. The selection and combination of antigens, adjuvants, and delivery platforms for vaccine formulations should be designed to trigger mixed humoral and cellular immune responses, considering that T. cruzi has a complex life cycle with both intracellular and bloodstream circulating parasite stages in vertebrate hosts. Here, we report the effectiveness of vaccination with a T. cruzi-specific protein family (TcTASV), employing both recombinant proteins with aluminum hydroxide and a recombinant baculovirus displaying a TcTASV antigen at the capsid. Vaccination stimulated immunological responses by producing lytic antibodies and antigen-specific CD4+ and CD8+ IFNÉ£ secreting lymphocytes. More than 90% of vaccinated animals survived after lethal challenges with T. cruzi, whereas all control mice died before 30 days post-infection. Vaccination also induced a strong decrease in chronic tissue parasitism and generated immunological memory that allowed vaccinated and infected animals to control both the reactivation of the infection after immunosuppression and a second challenge with T. cruzi. Interestingly, inoculation with wild-type baculovirus partially protected the mice against T. cruzi. In brief, we demonstrated for the first time that the combination of the baculovirus platform and the TcTASV family provides effective protection against Trypanosoma cruzi, which is a promising vaccine for Chagas disease.


Assuntos
Doença de Chagas , Parasitos , Vacinas Protozoárias , Trypanosoma cruzi , Vacinas , Humanos , Animais , Camundongos , Baculoviridae/genética , Antígenos de Protozoários/genética , Doença de Chagas/parasitologia , Trypanosoma cruzi/genética , Vacinação , Vacinas Protozoárias/genética
3.
Genes Dev ; 38(1-2): 46-69, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38286657

RESUMO

Approximately 20% of head and neck squamous cell carcinomas (HNSCCs) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The former group exhibits reduced proliferation, genome instability, and heightened sensitivity to genotoxic agents like PARP1/2 inhibitors. Conversely, H3K36M HNSCC models with constant H3K27me3 levels lack these characteristics unless H3K27me3 is elevated by DNA hypomethylating agents or inhibiting H3K27me3 demethylases KDM6A/B. Mechanistically, H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, aberrant H3K27me3 levels induced by H3K36M expression are not a bona fide epigenetic mark because they require continuous expression of H3K36M to be inherited. Moreover, increased sensitivity to PARP1/2 inhibitors in H3K36M HNSCC models depends solely on elevated H3K27me3 levels and diminishing BRCA1- and FANCD2-dependent DNA repair. Finally, a PARP1/2 inhibitor alone reduces tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a model with consistent H3K27me3, a combination of PARP1/2 inhibitors and agents that up-regulate H3K27me3 proves to be successful. These findings underscore the crucial balance between H3K36 and H3K27 methylation in maintaining genome instability, offering new therapeutic options for patients with H3K36me-deficient tumors.


Assuntos
Neoplasias de Cabeça e Pescoço , Histonas , Humanos , Histonas/metabolismo , Lisina/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Metilação , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/genética , Instabilidade Genômica/genética
4.
bioRxiv ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38076924

RESUMO

Approximately 20% of head and neck squamous cell carcinomas (HNSCC) exhibit reduced methylation on lysine 36 of histone H3 (H3K36me) due to mutations in histone methylase NSD1 or a lysine-to-methionine mutation in histone H3 (H3K36M). Whether such alterations of H3K36me can be exploited for therapeutic interventions is still unknown. Here, we show that HNSCC models expressing H3K36M can be divided into two groups: those that display aberrant accumulation of H3K27me3 and those that maintain steady levels of H3K27me3. The first group shows decreased proliferation, genome instability, and increased sensitivity to genotoxic agents, such as PARP1/2 inhibitors. In contrast, the H3K36M HNSCC models with steady H3K27me3 levels do not exhibit these characteristics unless H3K27me3 levels are elevated, either by DNA hypomethylating agents or by inhibiting the H3K27me3 demethylases KDM6A/B. Mechanistically, we found that H3K36M reduces H3K36me by directly impeding the activities of the histone methyltransferase NSD3 and the histone demethylase LSD2. Notably, we found that aberrant H3K27me3 levels induced by H3K36M expression is not a bona fide epigenetic mark in HNSCC since it requires continuous expression of H3K36M to be inherited. Moreover, increased sensitivity of H3K36M HNSCC models to PARP1/2 inhibitors solely depends on the increased H3K27me3 levels. Indeed, aberrantly high H3K27me3 levels decrease BRCA1 and FANCD2-dependent DNA repair, resulting in higher sensitivity to DNA breaks and replication stress. Finally, in support of our in vitro findings, a PARP1/2 inhibitor alone reduce tumor burden in a H3K36M HNSCC xenograft model with elevated H3K27me3, whereas in a H3K36M HNSCC xenograft model with consistent H3K27me3 levels, a combination of PARP1/2 inhibitors and agents that upregulate H3K27me3 proves to be successful. In conclusion, our findings underscore a delicate balance between H3K36 and H3K27 methylation, essential for maintaining genome stability. This equilibrium presents promising therapeutic opportunities for patients with H3K36me-deficient tumors.

5.
Cancers (Basel) ; 15(15)2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37568700

RESUMO

Cancer cachexia is largely characterized by muscle wasting and inflammation, leading to weight loss, functional impairment, poor quality of life (QOL), and reduced survival. The main barrier to therapeutic development is a lack of efficacy for improving clinically relevant outcomes, such as physical function or QOL, yet most nutraceutical studies focus on body weight. This review describes clinical and pre-clinical nutraceutical studies outside the context of complex nutritional and/or multimodal interventions, in the setting of cancer cachexia, in view of considerations for future clinical trial design. Clinical studies mostly utilized polyunsaturated fatty acids or amino acids/derivatives, and they primarily focused on body weight and, secondarily, on muscle mass and/or QOL. The few studies that measured physical function almost exclusively utilized handgrip strength with, predominantly, no time and/or group effect. Preclinical studies focused mainly on amino acids/derivatives and polyphenols, assessing body weight, muscle mass, and occasionally physical function. While this review does not provide sufficient evidence of the efficacy of nutraceuticals for cancer cachexia, more preclinical and adequately powered clinical studies are needed, and they should focus on clinically meaningful outcomes, including physical function and QOL.

6.
J Cachexia Sarcopenia Muscle ; 14(3): 1337-1348, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36942661

RESUMO

BACKGROUND: Ghrelin is a potential therapy for cachexia due to its orexigenic properties and anabolic effects on muscle and fat. However, its clinical use is limited by the short half-life of active (acylated) ghrelin (~11 min in humans). EXT418 is a novel long-acting, constitutively active ghrelin analog created by covalently linking it to a vitamin D derivative. Here, we evaluated the effects and mechanisms of action of EXT418 on Lewis lung carcinoma (LLC)-induced cachexia in mice. METHODS: Male C57BL/6J mice (5- to 7-month-old) were implanted with 1 × 106 heat-killed (HK) or live LLC cells. When the tumour was palpable, mice were injected with vehicle (T + V) or EXT418 daily (T + 418 Daily, 0.25 mg/kg/day) or every other day (T + 418 EOD, 0.5 mg/kg/EOD) for up to 14 days, whereas HK-treated mice were given vehicle (HK + V). Subsets of T + 418 Daily or EOD-treated mice were pair-fed to the T + V group. Body composition and grip strength were evaluated before tumour implantation and at the end of the experiment. Molecular markers were probed in muscles upon termination. RESULTS: In tumour-bearing mice, administration of EXT418 daily or EOD partially prevented weight loss (T + V vs. T + 418 Daily, P = 0.030; and vs. T + 418 EOD, P = 0.020). Similar effects were observed in whole body fat and lean body mass. Grip strength in tumour-bearing mice was improved by EXT418 daily (P = 0.010) or EOD (P = 0.008) administration compared with vehicle-treated mice. These effects of EXT418 on weight and grip strength were partially independent of food intake. EXT418 daily administration also improved type IIA (P = 0.015), IIB (P = 0.037) and IIX (P = 0.050) fibre cross-sectional area (CSA) in tibialis anterior (TA) and EXT418 EOD improved CSA of IIB fibres in red gastrocnemius (GAS; P = 0.005). In skeletal muscles, tumour-induced increases in atrogenes Fbxo32 and Trim63 were ameliorated by EXT418 treatments (TA and GAS/plantaris, PL), which were independent of food intake. EXT418 administration decreased expression of the mitophagy marker Bnip3 (GAS/PL; P ≤ 0.010). Similar effects of EXT418 EOD were observed in p62 (GAS/PL; P = 0.039). In addition, EXT418 treatments ameliorated the tumour-induced elevation in muscle Il6 transcript levels (TA and GAS/PL), independently of food intake. Il-6 transcript levels in adipose tissue and circulating IL-10 were elevated in response to the tumour but these increases were not significant with EXT418 administration. Tumour mass was not altered by EXT418. CONCLUSIONS: EXT418 mitigates LLC-induced cachexia by attenuating skeletal muscle inflammation, proteolysis, and mitophagy, without affecting tumour mass and partially independent of food intake.


Assuntos
Caquexia , Carcinoma Pulmonar de Lewis , Animais , Humanos , Masculino , Camundongos , Caquexia/tratamento farmacológico , Caquexia/etiologia , Caquexia/metabolismo , Carcinoma Pulmonar de Lewis/complicações , Carcinoma Pulmonar de Lewis/tratamento farmacológico , Carcinoma Pulmonar de Lewis/patologia , Grelina/farmacologia , Grelina/uso terapêutico , Grelina/metabolismo , Camundongos Endogâmicos C57BL , Redução de Peso
7.
Vaccine ; 38(48): 7645-7653, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33071003

RESUMO

The development of a Chagas disease vaccine has yet the need for the identification of novel combinations of antigens and adjuvants. Here, the performance of TcTASV-C proteins that are virulence factors of trypomastigotes and belong to a novel surface protein family specific for T. cruzi, have been evaluated as antigens for a prophylactic vaccine. Several immunization schemes in which TcTASV-C was combined with aluminum hydroxide, saponin and/or U-Omp19 were assayed. Aluminum hydroxide and saponin were assayed together to trigger different pathways of the immune response simultaneously. U-Omp19 is a promising novel adjuvant able to promote a Th1 immune response with IFNg production, thus an interesting molecule to be tested as adjuvant for the control of T. cruzi infection. Therefore, U-Omp19 was added to the aluminum hydroxide-saponin formulation as well as assayed individually with TcTASV-C. The immunization with TcTASV-C and U-Omp19 had the best performance as a prophylactic vaccine. Mice presented the lowest parasitemias and improved survival by 40% after being challenged with a highly virulent T. cruzi strain, which promoted 100% mortality in all other immunized groups. Immunization with TcTASV-C and U-Omp19 triggered cellular responses with IFN-γ and IL-17 production and with lytic antibodies that could explain the protection achieved by this vaccination scheme. To our knowledge, this is the first time that U-Omp19 is tested with a defined T. cruzi antigen in a vaccine formulation.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Fatores de Virulência , Imunidade Adaptativa , Adjuvantes Imunológicos , Hidróxido de Alumínio , Animais , Anticorpos Antiprotozoários , Antígenos de Protozoários , Doença de Chagas/imunologia , Doença de Chagas/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Trypanosoma cruzi/imunologia , Trypanosoma cruzi/patogenicidade
8.
Cell Microbiol ; 22(8): e13207, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32270902

RESUMO

To disseminate and colonise tissues in the mammalian host, Trypanosoma cruzi trypomastogotes should cross several biological barriers. How this process occurs or its impact in the outcome of the disease is largely speculative. We examined the in vitro transmigration of trypomastigotes through three-dimensional cultures (spheroids) to understand the tissular dissemination of different T. cruzi strains. Virulent strains were highly invasive: trypomastigotes deeply transmigrate up to 50 µm inside spheroids and were evenly distributed at the spheroid surface. Parasites inside spheroids were systematically observed in the space between cells suggesting a paracellular route of transmigration. On the contrary, poorly virulent strains presented a weak migratory capacity and remained in the external layers of spheroids with a patch-like distribution pattern. The invasiveness-understood as the ability to transmigrate deep into spheroids-was not a transferable feature between strains, neither by soluble or secreted factors nor by co-cultivation of trypomastigotes from invasive and non-invasive strains. Besides, we demonstrated that T. cruzi isolates from children that were born congenitally infected presented a highly migrant phenotype while an isolate from an infected mother (that never transmitted the infection to any of her children) presented significantly less migration. In brief, we demonstrated that in a 3D microenvironment each strain presents a characteristic migration pattern that can be associated to their in vivo behaviour. Altogether, data presented here repositionate spheroids as a valuable tool to study host-pathogen interactions.


Assuntos
Técnicas de Cultura de Células/métodos , Interações Hospedeiro-Patógeno , Esferoides Celulares/parasitologia , Trypanosoma cruzi/patogenicidade , Animais , Doença de Chagas/parasitologia , Criança , Chlorocebus aethiops , Citometria de Fluxo , Células HEK293 , Células HeLa , Humanos , Movimento , Esferoides Celulares/citologia , Trypanosoma cruzi/fisiologia , Células Vero
9.
Methods Mol Biol ; 1955: 165-177, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30868526

RESUMO

While cellular invasion by T. cruzi trypomastigotes and intracellular amastigote replication are well-characterized events that have been described by using 2D monolayer cultures, other relevant parasite-host interactions, like the dynamics of tissue invasiveness, cannot be captured using monolayer cultures. Spheroids constitute a valuable three-dimensional (3D) culture system because they mimic the microarchitecture of tissues and provide an environment similar to the encountered in natural infections, which includes the presence of extracellular matrix as well as 3D cell-cell interactions. In this work, we describe a protocol for studying transmigration of T. cruzi trypomastigotes into 3D spheroids. In the experimental setup, cells and parasites are labelled with two fluorescent dyes, allowing their visualization by confocal microscopy. We also describe the general procedure and setting of the confocal microscope and downstream applications for acquisition and reconstruction of 3D images. This model was employed to analyze the transmigration of trypomastigotes from the highly virulent and pantropic RA T. cruzi strain. Of course, other aspects encountered by T. cruzi in the mammalian host environment can be studied with this methodology.


Assuntos
Doença de Chagas/patologia , Técnicas de Cocultura/métodos , Interações Hospedeiro-Parasita , Microscopia Confocal/métodos , Esferoides Celulares/patologia , Trypanosoma cruzi/fisiologia , Comunicação Celular , Movimento Celular , Doença de Chagas/parasitologia , Células HeLa , Humanos , Substâncias Luminescentes/análise , Proteínas Luminescentes/análise , Esferoides Celulares/citologia , Esferoides Celulares/parasitologia , Trypanosoma cruzi/citologia , Proteína Vermelha Fluorescente
10.
PLoS Negl Trop Dis ; 12(5): e0006475, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29727453

RESUMO

TcTASV-C is a protein family of about 15 members that is expressed only in the trypomastigote stage of Trypanosoma cruzi. We have previously shown that TcTASV-C is located at the parasite surface and secreted to the medium. Here we report that the expression of different TcTASV-C genes occurs simultaneously at the trypomastigote stage and while some secreted and parasite-associated products are found in both fractions, others are different. Secreted TcTASV-C are mainly shedded through trypomastigote extracellular vesicles, of which they are an abundant constituent, despite its scarce expression on culture-derived trypomastigotes. In contrast, TcTASV-C is highly expressed in bloodstream trypomastigotes; its upregulation in bloodstream parasites was observed in different T. cruzi strains and was specific for TcTASV-C, suggesting that some host-molecules trigger TcTASV-C expression. TcTASV-C is also strongly secreted by bloodstream parasites. A DNA prime-protein boost immunization scheme with TcTASV-C was only partially effective to control the infection in mice challenged with a highly virulent T. cruzi strain. Vaccination triggered a strong humoral response that delayed the appearance of bloodstream trypomastigotes at the early phase of the infection. Linear epitopes recognized by vaccinated mice were mapped within the TcTASV-C family motif, suggesting that blockade of secreted TcTASV-C impacts on the settlement of infection. Furthermore, although experimental and naturally T. cruzi-infected hosts did not react with antigens from extracellular vesicles, vaccinated and challenged mice recognized not only TcTASV-C but also other vesicle-antigens. We hypothesize that TcTASV-C is involved in the establishment of the initial T. cruzi infection in the mammalian host. Altogether, these results point towards TcTASV-C as a novel secreted virulence factor of T. cruzi trypomastigotes.


Assuntos
Sangue/parasitologia , Doença de Chagas/parasitologia , Vesículas Extracelulares/parasitologia , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/crescimento & desenvolvimento , Trypanosoma cruzi/metabolismo , Fatores de Virulência/metabolismo , Animais , Doença de Chagas/sangue , Doença de Chagas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C3H , Família Multigênica , Transporte Proteico , Proteínas de Protozoários/genética , Trypanosoma cruzi/genética , Fatores de Virulência/genética
11.
PLoS One ; 8(7): e71192, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23923058

RESUMO

Among the several multigene families codified by the genome of T. cruzi, the TcTASV family was the latest discovered. The TcTASV (Trypomastigote, Alanine, Serine, Valine) family is composed of ∼40 members, with conserved carboxi- and amino-termini but with a variable central core. According to the length and sequence of the central region the family is split into 3 subfamilies. The TcTASV family is conserved in the genomes of - at least - lineages TcI and TcVI and has no orthologues in other trypanosomatids. In the present work we focus on the study of the TcTASV-C subfamily, composed by 16 genes in the CL Brener strain. We determined that TcTASV-C is preferentially expressed in trypomastigotes, but it is not a major component of the parasite. Both immunoflourescence and flow cytometry experiments indicated that TcTASV-C has a clonal expression, i.e. it is not expressed by all the parasites of a certain population at the same time. We also determined that TcTASV-C is phosphorylated and glycosylated. TASV-C is attached to the parasite surface by a GPI anchor and is shed spontaneously into the medium. About 30% of sera from infected hosts reacted with TcTASV-C, confirming its exposition to the immune system. Its superficial localization and secretory nature suggest a possible role in host-parasite interactions.


Assuntos
Família Multigênica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Trypanosoma cruzi/genética , Trypanosoma cruzi/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Antiprotozoários/imunologia , Clonagem Molecular , Expressão Gênica , Glicosilação , Humanos , Dados de Sequência Molecular , Oligossacarídeos , Fosforilação , Transporte Proteico , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Coelhos , Trypanosoma cruzi/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...